Integrable symplectic maps via reduction of B\"{a}cklund transformation
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 39-50

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss the stationary potential equations as illustrative examples to explain how to construct integrable symplectic maps via Bäcklund transformations. We first give a terse survey of Bäcklund transformations of the potential KdV equation and the potential fifth-order KdV equation. Then, using Jacobi–Ostrogradsky coordinates, we obtain canonical Hamiltonian forms of the stationary potential equations. Finally, we construct symplectic maps from the reduction of a Bäcklund transformation and verify that they are integrable.
Keywords: integrable symplectic map, stationary potential KdV equation, Bäcklund transformation, Lax representation.
@article{TMF_2021_208_1_a2,
     author = {Dianlou Du and Yuanyuan Lui and Xue Wang},
     title = {Integrable symplectic maps via reduction of {B\"{a}cklund} transformation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {39--50},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a2/}
}
TY  - JOUR
AU  - Dianlou Du
AU  - Yuanyuan Lui
AU  - Xue Wang
TI  - Integrable symplectic maps via reduction of B\"{a}cklund transformation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 39
EP  - 50
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a2/
LA  - ru
ID  - TMF_2021_208_1_a2
ER  - 
%0 Journal Article
%A Dianlou Du
%A Yuanyuan Lui
%A Xue Wang
%T Integrable symplectic maps via reduction of B\"{a}cklund transformation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 39-50
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a2/
%G ru
%F TMF_2021_208_1_a2
Dianlou Du; Yuanyuan Lui; Xue Wang. Integrable symplectic maps via reduction of B\"{a}cklund transformation. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a2/