Kadomtsev–Petviashvili hierarchies of types B and C
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 15-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is a short review of the Kadomtsev–Petviashvili hierarchies of types B and C. The main objects are the $L$ operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function, and the tau function. All of them are discussed in the paper. Connections with the usual (type-A) Kadomtsev–Petviashvili hierarchy are clarified. Examples of soliton solutions and the dispersionless limit of the hierarchies are also considered.
Keywords: Kadomtsev–Petviashvili hierarchies, tau function
Mots-clés : soliton solutions.
@article{TMF_2021_208_1_a1,
     author = {A. V. Zabrodin},
     title = {Kadomtsev{\textendash}Petviashvili hierarchies of types {B} and {C}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {15--38},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a1/}
}
TY  - JOUR
AU  - A. V. Zabrodin
TI  - Kadomtsev–Petviashvili hierarchies of types B and C
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 15
EP  - 38
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a1/
LA  - ru
ID  - TMF_2021_208_1_a1
ER  - 
%0 Journal Article
%A A. V. Zabrodin
%T Kadomtsev–Petviashvili hierarchies of types B and C
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 15-38
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a1/
%G ru
%F TMF_2021_208_1_a1
A. V. Zabrodin. Kadomtsev–Petviashvili hierarchies of types B and C. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 15-38. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a1/

[1] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[2] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Transformation groups for soliton equations IV. A new hierarchy of soliton equations of KP-type”, Phys. D, 4:3 (1982), 343–365 | DOI | MR

[3] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “KP hierarchy of orthogonal and symplectic type – transformation groups for soliton equations VI”, J. Phys. Soc. Japan, 50:11 (1981), 3813–3818 | DOI | MR

[4] M. Jimbo, T. Miwa, “Soliton equations and infinite dimensional Lie algebras”, Publ. RIMS, 19:3 (1983), 943–1001 | DOI | MR | Zbl

[5] I. Loris, R. Willox, “Symmetry reductions of the BKP hierarchy”, J. Math. Phys., 40:3 (1999), 1420–1431 | DOI | MR

[6] M.-H. Tu, “On the BKP hierarchy: additional symmetries, Fay identity and Adler–Shiota–van Moerbeke formula”, Lett. Math. Phys., 81:2 (2007), 93–105 | DOI | MR

[7] A. Dimakis, F. Müller-Hoissen, “BKP and CKP revisited: the odd KP system”, Inverse Problems, 25:4 (2009), 045001, 33 pp., arXiv: 0810.0757 | DOI | MR

[8] L. Chang, C.-Z. Wu, “Tau function of the CKP hierarchy and nonlinearizable Virasoro symmetries”, Nonlinearity, 26:9 (2013), 2577–2596 | DOI | MR

[9] J. Cheng, J. He, “The ‘ghost’ symmetry in the CKP hierarchy”, J. Geom. Phys., 80 (2014), 49–57 | DOI | MR

[10] J. W. van de Leur, A. Yu. Orlov, T. Shiota, “CKP hierarchy, bosonic tau function and bosonization formulae”, SIGMA, 8 (2012), 036, arXiv: 1102.0087 | MR | Zbl

[11] I. Krichever, A. Zabrodin, Kadomtsev–Petviashvili turning points and CKP hierarchy, arXiv: (submitted to Commun. Math. Phys.) 2012.04482

[12] I. M. Krichever, “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6(198) (1977), 183–208 | DOI | MR | Zbl

[13] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, “Quasi-periodic solutions of the orthogonal KP equation – transformation groups of soliton equations V”, Publ. RIMS, 18:3 (1982), 1111–1119 | DOI | MR

[14] S. M. Natanzon, “Differentsialnye uravneniya na teta-funktsii Prima. Kriterii veschestvennosti dvumernykh konechnozonnykh potentsialnykh operatorov Shredingera”, Funkts. analiz i ego prilozh., 26:1 (1992), 17–26 | DOI | MR | Zbl

[15] D. Rudneva, A. Zabrodin, “Dynamics of poles of elliptic solutions to BKP equation”, J. Phys. A: Math. Theor., 53:7 (2020), 075202, 17 pp. | DOI | MR

[16] A. Zabrodin, “Elliptic solutions to integrable nonlinear equations and many-body systems”, J. Geom. Phys., 146 (2019), 103506, 26 pp. | DOI | MR

[17] T. Takebe, “From general Zakharov–Shabat equations to the KP and the Toda lattice hierarchies”, Internat. J. Modern Phys. A, 7:supp01b (1992), 923–939 | DOI | MR

[18] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, Japan, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto; North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl

[19] S. M. Natanzon, “Formulas for $A_n$ and $B_n$-solutions of WDVV equations”, J. Geom. Phys., 39:4 (2001), 323–336 | DOI | MR

[20] S. M. Natanzon, “Vittenovskoe reshenie ierarkhii Gelfanda–Dikogo”, Funkts. analiz i ego prilozh., 37:1 (2003), 25–37 | DOI | DOI | MR | Zbl

[21] S. Natanzon, A. Zabrodin, “Formal solution to the KP hierarchy”, J. Phys. A: Math. Theor., 49:14 (2016), 145206 | DOI | MR

[22] K. Takasaki, “Quasi-classical limit of BKP hierarchy and $W$-infinity symmetries”, Lett. Math. Phys., 28:3 (1993), 177–185 | DOI | MR

[23] K. Takasaki, “Dispersionless Hirota equations of two-component BKP hierarchy”, SIGMA, 2 (2006), 057, 22 pp. | DOI | MR | Zbl

[24] T. Takebe, “Dispersionless BKP hierarchy and quadrant Löwner equation”, SIGMA, 10 (2014), 023, 13 pp. | DOI | MR