@article{TMF_2021_208_1_a0,
author = {A. B. Benhassine},
title = {Weak condition for a~class of~$p${-Laplacian} {Hamiltonian} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--14},
year = {2021},
volume = {208},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/}
}
A. B. Benhassine. Weak condition for a class of $p$-Laplacian Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/
[1] R. Kajikiya, “Symmetric mountain pass lemma and sublinear elliptic equations”, J. Differ. Equ., 260:3 (2016), 2587–2610 | DOI | MR
[2] A. Benkhassin, “Gamiltonovy sistemy drobnogo poryadka s lokalno zadannymi potentsialami”, TMF, 195:1 (2018), 81–90 | DOI | DOI | MR
[3] Y. H. Ding, “Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems”, Nonlinear Anal.: Theor. Methods Appl., 25:11 (1995), 1095–1113 | DOI | MR | Zbl
[4] L. Li, M. Schechter, “Existence solutions for second order Hamiltonian systems”, Nonlin. Anal.: Real World Appl., 27 (2016), 283–296 | DOI | MR
[5] Y. Ye, C.-L. Tang, “Infinitely many periodic solutions of non-autonomous second-order Hamiltonian systems”, Proc. Roy. Soc. Edinburgh. Sec. A, 144:1 (2014), 205–223 | DOI | MR
[6] Q. Zhang, “Homoclinic solutions for second order Hamiltonian systems with general potentials near the origin”, Elec. J. Qual. Theory Differ. Equ., 2013, no. 54, 1–13 | DOI | MR
[7] Q. Zhang, “Homoclinic solutions for a class of second order Hamiltonian systems”, Math. Nachr., 288:8–9 (2015), 1073–1081 | DOI | MR
[8] R. Kajikiya, “A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations”, J. Funct. Anal., 225:2 (2005), 352–370 | DOI | MR | Zbl
[9] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston, MA, 1996 | DOI | MR
[10] J. Mawhin, M. Willem, Critical point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, New York, 1989 | MR
[11] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, AMS, Providence, RI, 1986 | DOI | MR
[12] X. Liu, T. Horiuchi, H. Ando, “One dimensional weighted Hardy's inequalities and application”, J. Math. Inequal., 14:4 (2020), 12030-1222, arXiv: 1909.10689 | DOI | MR