Weak condition for a~class of~$p$-Laplacian Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a general and weak sufficient condition that is very close to a necessary and sufficient condition for the existence of a sequence of solutions converging to zero for the partial differential equations known as the $p$-Laplacian Hamiltonian systems. An application is also given to illustrate our main theoretical result.
Keywords: sublinear $p$-Laplacian Hamiltonian systems, infinitely many solutions, variational methods.
@article{TMF_2021_208_1_a0,
     author = {A. B. Benhassine},
     title = {Weak condition for a~class of~$p${-Laplacian} {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {208},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/}
}
TY  - JOUR
AU  - A. B. Benhassine
TI  - Weak condition for a~class of~$p$-Laplacian Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 3
EP  - 14
VL  - 208
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/
LA  - ru
ID  - TMF_2021_208_1_a0
ER  - 
%0 Journal Article
%A A. B. Benhassine
%T Weak condition for a~class of~$p$-Laplacian Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 3-14
%V 208
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/
%G ru
%F TMF_2021_208_1_a0
A. B. Benhassine. Weak condition for a~class of~$p$-Laplacian Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/