Weak condition for a class of $p$-Laplacian Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give a general and weak sufficient condition that is very close to a necessary and sufficient condition for the existence of a sequence of solutions converging to zero for the partial differential equations known as the $p$-Laplacian Hamiltonian systems. An application is also given to illustrate our main theoretical result.
Keywords: sublinear $p$-Laplacian Hamiltonian systems, infinitely many solutions, variational methods.
@article{TMF_2021_208_1_a0,
     author = {A. B. Benhassine},
     title = {Weak condition for a~class of~$p${-Laplacian} {Hamiltonian} systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--14},
     year = {2021},
     volume = {208},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/}
}
TY  - JOUR
AU  - A. B. Benhassine
TI  - Weak condition for a class of $p$-Laplacian Hamiltonian systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 3
EP  - 14
VL  - 208
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/
LA  - ru
ID  - TMF_2021_208_1_a0
ER  - 
%0 Journal Article
%A A. B. Benhassine
%T Weak condition for a class of $p$-Laplacian Hamiltonian systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 3-14
%V 208
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/
%G ru
%F TMF_2021_208_1_a0
A. B. Benhassine. Weak condition for a class of $p$-Laplacian Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/

[1] R. Kajikiya, “Symmetric mountain pass lemma and sublinear elliptic equations”, J. Differ. Equ., 260:3 (2016), 2587–2610 | DOI | MR

[2] A. Benkhassin, “Gamiltonovy sistemy drobnogo poryadka s lokalno zadannymi potentsialami”, TMF, 195:1 (2018), 81–90 | DOI | DOI | MR

[3] Y. H. Ding, “Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems”, Nonlinear Anal.: Theor. Methods Appl., 25:11 (1995), 1095–1113 | DOI | MR | Zbl

[4] L. Li, M. Schechter, “Existence solutions for second order Hamiltonian systems”, Nonlin. Anal.: Real World Appl., 27 (2016), 283–296 | DOI | MR

[5] Y. Ye, C.-L. Tang, “Infinitely many periodic solutions of non-autonomous second-order Hamiltonian systems”, Proc. Roy. Soc. Edinburgh. Sec. A, 144:1 (2014), 205–223 | DOI | MR

[6] Q. Zhang, “Homoclinic solutions for second order Hamiltonian systems with general potentials near the origin”, Elec. J. Qual. Theory Differ. Equ., 2013, no. 54, 1–13 | DOI | MR

[7] Q. Zhang, “Homoclinic solutions for a class of second order Hamiltonian systems”, Math. Nachr., 288:8–9 (2015), 1073–1081 | DOI | MR

[8] R. Kajikiya, “A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations”, J. Funct. Anal., 225:2 (2005), 352–370 | DOI | MR | Zbl

[9] M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications, 24, Birkhäuser, Boston, MA, 1996 | DOI | MR

[10] J. Mawhin, M. Willem, Critical point Theory and Hamiltonian Systems, Applied Mathematical Sciences, 74, Springer, New York, 1989 | MR

[11] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, 65, AMS, Providence, RI, 1986 | DOI | MR

[12] X. Liu, T. Horiuchi, H. Ando, “One dimensional weighted Hardy's inequalities and application”, J. Math. Inequal., 14:4 (2020), 12030-1222, arXiv: 1909.10689 | DOI | MR