Weak condition for a~class of~$p$-Laplacian Hamiltonian systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a general and weak sufficient condition that is very close to a necessary and sufficient condition for the existence of a sequence of solutions converging to zero for the partial differential equations known as the $p$-Laplacian Hamiltonian systems. An application is also given to illustrate our main theoretical result.
Keywords:
sublinear $p$-Laplacian Hamiltonian systems, infinitely many solutions, variational methods.
@article{TMF_2021_208_1_a0,
author = {A. B. Benhassine},
title = {Weak condition for a~class of~$p${-Laplacian} {Hamiltonian} systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {3--14},
publisher = {mathdoc},
volume = {208},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/}
}
A. B. Benhassine. Weak condition for a~class of~$p$-Laplacian Hamiltonian systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 208 (2021) no. 1, pp. 3-14. http://geodesic.mathdoc.fr/item/TMF_2021_208_1_a0/