Discrete traveling waves in a~relay system of Mackey--Glass equations with two delays
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 489-504

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a model of a ring circuit of $m$ generators that is a relay analog of a circuit of Mackey–Glass generators. In this model, each of the generators is described by the limit Mackey–Glass equation. For this relay system, we prove the existence of a periodic solution of discrete traveling wave type, i.e., a solution all of whose $m$ components (describing the $m$ generators) are represented by the same periodic function phase-shifted with respect to one another.
Keywords: system of differential–difference equations, Mackey–Glass equation, Mackey–Glass-type generator, discrete traveling wave, Poincaré operator.
@article{TMF_2021_207_3_a9,
     author = {M. M. Preobrazhenskaya},
     title = {Discrete traveling waves in a~relay system of {Mackey--Glass} equations with two delays},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {489--504},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
TI  - Discrete traveling waves in a~relay system of Mackey--Glass equations with two delays
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 489
EP  - 504
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/
LA  - ru
ID  - TMF_2021_207_3_a9
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%T Discrete traveling waves in a~relay system of Mackey--Glass equations with two delays
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 489-504
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/
%G ru
%F TMF_2021_207_3_a9
M. M. Preobrazhenskaya. Discrete traveling waves in a~relay system of Mackey--Glass equations with two delays. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 489-504. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/