Discrete traveling waves in a relay system of Mackey–Glass equations with two delays
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 489-504 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose a model of a ring circuit of $m$ generators that is a relay analog of a circuit of Mackey–Glass generators. In this model, each of the generators is described by the limit Mackey–Glass equation. For this relay system, we prove the existence of a periodic solution of discrete traveling wave type, i.e., a solution all of whose $m$ components (describing the $m$ generators) are represented by the same periodic function phase-shifted with respect to one another.
Keywords: system of differential–difference equations, Mackey–Glass equation, Mackey–Glass-type generator, discrete traveling wave
Mots-clés : Poincaré operator.
@article{TMF_2021_207_3_a9,
     author = {M. M. Preobrazhenskaya},
     title = {Discrete traveling waves in a~relay system of {Mackey{\textendash}Glass} equations with two delays},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {489--504},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
TI  - Discrete traveling waves in a relay system of Mackey–Glass equations with two delays
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 489
EP  - 504
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/
LA  - ru
ID  - TMF_2021_207_3_a9
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%T Discrete traveling waves in a relay system of Mackey–Glass equations with two delays
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 489-504
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/
%G ru
%F TMF_2021_207_3_a9
M. M. Preobrazhenskaya. Discrete traveling waves in a relay system of Mackey–Glass equations with two delays. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 489-504. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/

[1] M. M. Preobrazhenskaya, “Releinaya model Meki–Glassa s dvumya zapazdyvaniyami”, TMF, 203:1 (2020), 106–118 | DOI | DOI | MR

[2] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI

[3] L. Glass, M. Meki, Ot chasov k khaosu. Ritmy zhizni, Mir, M., 1991 | MR

[4] L. Junges, J. A. C. Gallas, “Intricate routes to chaos in the Mackey–Glass delayed feedback system”, Phys. Lett. A, 376:30–31 (2012), 2109–2116 | DOI

[5] L. Berezansky, E. Braverman, “Mackey–Glass equation with variable coefficients”, Comput. Math. Appl., 51:1 (2006), 1–16 | DOI | MR

[6] H. Su, X. Ding, W. Li, “Numerical bifurcation control of Mackey–Glass system”, Appl. Math. Model., 35:7 (2011), 3460–3472 | DOI | MR

[7] E. Liz, E. Trofimchuk, S. Trofimchuk, “Mackey–Glass type delay differential equations near the boundary of absolute stability”, J. Math. Anal. Appl., 275:2 (2002), 747–760 | DOI | MR

[8] X.-M. Wu, J.-W. Li, H.-Q. Zhou, “A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis”, Comput. Math. Appl., 54:6 (2007), 840–849 | DOI | MR

[9] E. P. Kubyshkin, A. R. Moryakova, “Bifurkatsii periodicheskikh reshenii uravneniya Mekki–Glassa”, Model. i analiz inform. sistem, 23:6 (2016), 784–803 | DOI | MR

[10] A. Namajūnas, K. Pyragas, A. Tamaševičius, “Stabilization of an unstable steady state in a Mackey–Glass system”, Phys. Lett. A, 204:3–4 (1995), 255–262 | DOI

[11] M. Tateno, A. Uchida, “Nonlinear dynamics and chaos synchronization in Mackey–Glass electronic circuits with multiple time-delayed feedback”, Nonlin. Theory Appl., IEICE, 3:2 (2012), 155–164 | DOI

[12] P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors”, Phys. D, 9:1–2 (1983), 189–208 | DOI | MR

[13] P. Amil, C. Cabeza, A. C. Marti, “Exact discrete-time implementation of the Mackey–Glass delayed model”, IEEE Trans. on Circuits and Systems II: Express Briefs, 62:7 (2015), 681–685 | DOI

[14] P. Amil, C. Cabeza, C. Masoller, A. Marti, “Organization and identification of solutions in the time-delayed Mackey–Glass model”, Chaos, 25:4 (2015), 043112, 8 pp., arXiv: 1412.6360 | DOI | MR

[15] E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, K. A. Shore, “Chaos synchronization between the Mackey–Glass systems with multiple time delays”, Chaos, Solitons Fractals, 29:4 (2006), 854–861 | DOI | MR

[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom podkhode k modelirovaniyu iskusstvennykh gennykh setei”, TMF, 194:3 (2018), 547–568 | DOI | DOI | MR

[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Kvaziustoichivye struktury v koltsevykh gennykh setyakh”, Zh. vychisl. matem. i matem. fiz., 58:5 (2018), 682–704 | DOI | DOI | MR

[18] S. Sano, A. Uchida, S. Yoshimori, R. Roy, “Dual synchronization of chaos in Mackey–Glass electronic circuits with time-delayed feedback”, Phys. Rev. E, 75:1 (2007), 016207, 6 pp. | DOI

[19] A. Wan, J. Wei, “Bifurcation analysis of Mackey–Glass electronic circuits model with delayed feedback”, Nonlinear Dynam., 57:1–2 (2009), 85–96 | DOI | MR

[20] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diskretnye avtovolny v neironnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 840–858 | DOI | MR

[21] W. Horbelt, J. Timmer, H. U. Voss, “Parameter estimation in nonlinear delayed feedback systems from noisy data”, Phys. Lett. A, 299:5–6 (2002), 513–521 | DOI

[22] C. H. López-Caraballo, I. Salfate, J. A. Lazzús, M. Rivera, L. Palma-Chilla, “Mackey–Glass noisy chaotic time series prediction by a swarm-optimized neural network”, J. Phys.: Conf. Ser., 720 (2016), 012002, 11 pp. | DOI

[23] J. Zhao, Y. Li, X. Yu, X. Zhang, “Levenberg–Marquardt algorithm for Mackey–Glass chaotic time series prediction”, Discrete Dyn. Nat. Soc., 2014 (2014), 193758, 6 pp. | DOI | MR

[24] M. C. Mackey, L. Glass, “Mackey–Glass equation”, Scholarpedia, 5:3 (2010), 6908 | DOI

[25] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl

[26] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | DOI | MR

[27] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR

[28] S. A. Kashchenko, “Steady states of a delay differential equation of an insect population's dynamics”, Autom. Control Comput. Sci., 48:7 (2015), 445–457 | DOI

[29] S. D. Glyzin, M. M. Preobrazhenskaia, “Multistability and bursting in a pair of delay coupled oscillators with a relay nonlinearity”, IFAC-Papers On Line, 52:18 (2019), 109–114 | DOI

[30] S. D. Glyzin, M. M. Preobrazhenskaia, “Two delay-coupled neurons with a relay nonlinearity”, Advances in Neural Computation, Machine Learning, and Cognitive Research III, Selected Papers from the XXI International Conference on Neuroinformatics (Dolgoprudny, Moscow Region, Russia, October 7–11, 2019), Studies in Computational Intelligence, 856, eds. B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, Y. Tiumentsev, 2020, 181–189 | DOI

[31] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Tr. MIAN, 216 (1997), 126–153 | MR | Zbl

[32] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Teoriya neklassicheskikh relaksatsionnykh kolebanii v singulyarno vozmuschennykh sistemakh s zapazdyvaniem”, Matem. sb., 205:6 (2014), 21–86 | DOI | DOI | MR | Zbl

[33] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | DOI | MR | Zbl