Mots-clés : Poincaré operator.
@article{TMF_2021_207_3_a9,
author = {M. M. Preobrazhenskaya},
title = {Discrete traveling waves in a~relay system of {Mackey{\textendash}Glass} equations with two delays},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {489--504},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/}
}
TY - JOUR AU - M. M. Preobrazhenskaya TI - Discrete traveling waves in a relay system of Mackey–Glass equations with two delays JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 489 EP - 504 VL - 207 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/ LA - ru ID - TMF_2021_207_3_a9 ER -
M. M. Preobrazhenskaya. Discrete traveling waves in a relay system of Mackey–Glass equations with two delays. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 489-504. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a9/
[1] M. M. Preobrazhenskaya, “Releinaya model Meki–Glassa s dvumya zapazdyvaniyami”, TMF, 203:1 (2020), 106–118 | DOI | DOI | MR
[2] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI
[3] L. Glass, M. Meki, Ot chasov k khaosu. Ritmy zhizni, Mir, M., 1991 | MR
[4] L. Junges, J. A. C. Gallas, “Intricate routes to chaos in the Mackey–Glass delayed feedback system”, Phys. Lett. A, 376:30–31 (2012), 2109–2116 | DOI
[5] L. Berezansky, E. Braverman, “Mackey–Glass equation with variable coefficients”, Comput. Math. Appl., 51:1 (2006), 1–16 | DOI | MR
[6] H. Su, X. Ding, W. Li, “Numerical bifurcation control of Mackey–Glass system”, Appl. Math. Model., 35:7 (2011), 3460–3472 | DOI | MR
[7] E. Liz, E. Trofimchuk, S. Trofimchuk, “Mackey–Glass type delay differential equations near the boundary of absolute stability”, J. Math. Anal. Appl., 275:2 (2002), 747–760 | DOI | MR
[8] X.-M. Wu, J.-W. Li, H.-Q. Zhou, “A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis”, Comput. Math. Appl., 54:6 (2007), 840–849 | DOI | MR
[9] E. P. Kubyshkin, A. R. Moryakova, “Bifurkatsii periodicheskikh reshenii uravneniya Mekki–Glassa”, Model. i analiz inform. sistem, 23:6 (2016), 784–803 | DOI | MR
[10] A. Namajūnas, K. Pyragas, A. Tamaševičius, “Stabilization of an unstable steady state in a Mackey–Glass system”, Phys. Lett. A, 204:3–4 (1995), 255–262 | DOI
[11] M. Tateno, A. Uchida, “Nonlinear dynamics and chaos synchronization in Mackey–Glass electronic circuits with multiple time-delayed feedback”, Nonlin. Theory Appl., IEICE, 3:2 (2012), 155–164 | DOI
[12] P. Grassberger, I. Procaccia, “Measuring the strangeness of strange attractors”, Phys. D, 9:1–2 (1983), 189–208 | DOI | MR
[13] P. Amil, C. Cabeza, A. C. Marti, “Exact discrete-time implementation of the Mackey–Glass delayed model”, IEEE Trans. on Circuits and Systems II: Express Briefs, 62:7 (2015), 681–685 | DOI
[14] P. Amil, C. Cabeza, C. Masoller, A. Marti, “Organization and identification of solutions in the time-delayed Mackey–Glass model”, Chaos, 25:4 (2015), 043112, 8 pp., arXiv: 1412.6360 | DOI | MR
[15] E. M. Shahverdiev, R. A. Nuriev, R. H. Hashimov, K. A. Shore, “Chaos synchronization between the Mackey–Glass systems with multiple time delays”, Chaos, Solitons Fractals, 29:4 (2006), 854–861 | DOI | MR
[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom podkhode k modelirovaniyu iskusstvennykh gennykh setei”, TMF, 194:3 (2018), 547–568 | DOI | DOI | MR
[17] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Kvaziustoichivye struktury v koltsevykh gennykh setyakh”, Zh. vychisl. matem. i matem. fiz., 58:5 (2018), 682–704 | DOI | DOI | MR
[18] S. Sano, A. Uchida, S. Yoshimori, R. Roy, “Dual synchronization of chaos in Mackey–Glass electronic circuits with time-delayed feedback”, Phys. Rev. E, 75:1 (2007), 016207, 6 pp. | DOI
[19] A. Wan, J. Wei, “Bifurcation analysis of Mackey–Glass electronic circuits model with delayed feedback”, Nonlinear Dynam., 57:1–2 (2009), 85–96 | DOI | MR
[20] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diskretnye avtovolny v neironnykh sistemakh”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 840–858 | DOI | MR
[21] W. Horbelt, J. Timmer, H. U. Voss, “Parameter estimation in nonlinear delayed feedback systems from noisy data”, Phys. Lett. A, 299:5–6 (2002), 513–521 | DOI
[22] C. H. López-Caraballo, I. Salfate, J. A. Lazzús, M. Rivera, L. Palma-Chilla, “Mackey–Glass noisy chaotic time series prediction by a swarm-optimized neural network”, J. Phys.: Conf. Ser., 720 (2016), 012002, 11 pp. | DOI
[23] J. Zhao, Y. Li, X. Yu, X. Zhang, “Levenberg–Marquardt algorithm for Mackey–Glass chaotic time series prediction”, Discrete Dyn. Nat. Soc., 2014 (2014), 193758, 6 pp. | DOI | MR
[24] M. C. Mackey, L. Glass, “Mackey–Glass equation”, Scholarpedia, 5:3 (2010), 6908 | DOI
[25] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl
[26] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | DOI | MR
[27] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR
[28] S. A. Kashchenko, “Steady states of a delay differential equation of an insect population's dynamics”, Autom. Control Comput. Sci., 48:7 (2015), 445–457 | DOI
[29] S. D. Glyzin, M. M. Preobrazhenskaia, “Multistability and bursting in a pair of delay coupled oscillators with a relay nonlinearity”, IFAC-Papers On Line, 52:18 (2019), 109–114 | DOI
[30] S. D. Glyzin, M. M. Preobrazhenskaia, “Two delay-coupled neurons with a relay nonlinearity”, Advances in Neural Computation, Machine Learning, and Cognitive Research III, Selected Papers from the XXI International Conference on Neuroinformatics (Dolgoprudny, Moscow Region, Russia, October 7–11, 2019), Studies in Computational Intelligence, 856, eds. B. Kryzhanovsky, W. Dunin-Barkowski, V. Redko, Y. Tiumentsev, 2020, 181–189 | DOI
[31] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Tr. MIAN, 216 (1997), 126–153 | MR | Zbl
[32] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Teoriya neklassicheskikh relaksatsionnykh kolebanii v singulyarno vozmuschennykh sistemakh s zapazdyvaniem”, Matem. sb., 205:6 (2014), 21–86 | DOI | DOI | MR | Zbl
[33] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye avtokolebaniya v setyakh impulsnykh neironov”, UMN, 70:3(423) (2015), 3–76 | DOI | DOI | MR | Zbl