On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 458-488 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the existence and uniqueness of the Kadomtsev–Petviashvili (KP) hierarchy solutions in the algebra $\mathcal FCl(S^1,\mathbb K^n)$ of formal classical pseudodifferential operators. The classical algebra $\Psi DO(S^1,\mathbb K^n)$, where the KP hierarchy is well known, appears as a subalgebra of $\mathcal FCl(S^1,\mathbb K^n)$. We investigate algebraic properties of $\mathcal FCl(S^1,\mathbb K^n)$ such as splittings, $r$-matrices, extension of the Gelfand–Dickey bracket, and almost complex structures. We then prove the existence and uniqueness of the KP hierarchy solutions in $\mathcal FCl(S^1,\mathbb K^n)$ with respect to extended classes of initial values. Finally, we extend this KP hierarchy to complex-order formal pseudodifferential operators and describe their Hamiltonian structures similarly to the previously known formal case.
Keywords: formal pseudodifferential operator, Kadomtsev–Petviashvili hierarchy, almost complex structure, almost quaternionic structure.
@article{TMF_2021_207_3_a8,
     author = {J.-P. Magnot and V. N. Rubtsov},
     title = {On {the~Kadomtsev-Petviashvili} hierarchy in an~extended class of formal pseudo-differential operators},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {458--488},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a8/}
}
TY  - JOUR
AU  - J.-P. Magnot
AU  - V. N. Rubtsov
TI  - On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 458
EP  - 488
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a8/
LA  - ru
ID  - TMF_2021_207_3_a8
ER  - 
%0 Journal Article
%A J.-P. Magnot
%A V. N. Rubtsov
%T On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 458-488
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a8/
%G ru
%F TMF_2021_207_3_a8
J.-P. Magnot; V. N. Rubtsov. On the Kadomtsev-Petviashvili hierarchy in an extended class of formal pseudo-differential operators. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 458-488. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a8/

[1] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR | Zbl

[2] A. Eslami Rad, J.-P. Magnot, E. G. Reyes, “The Cauchy problem of the Kadomtsev–Petviashvili hierarchy with arbitrary coefficient algebra”, J. Nonlinear Math. Phys., 24:suppl. 1 (2017), 103–120 | DOI | MR

[3] J.-P. Magnot, E. G. Reyes, “Well-posedness of the Kadomtsev–Petviashvili hierarchy, Mulase factorization, and Frölicher Lie groups”, Ann. Henri Poincaré, 21:6 (2020), 1893–1945 | DOI | MR

[4] P. B. Gilkey, “Invariance theory, the heat equation and the Atiyah–Singer index theorem”, Mathematics Lecture Series, 11, Publish or Perish, Wilmington, DE, 1984 | MR

[5] S. Paycha, Regularised Integrals, Sums and Traces. An Analytic Point of View, University Lecture Series, 59, AMS, Providence, RI, 2012 | DOI | MR

[6] S. Scott, Traces and Determinants of Pseudodifferential Operators, Oxford Univ. Press, Oxford, 2010 | DOI | MR

[7] R. T. Seeley, “Complex powers of an elliptic operator”, Singular Integrals, Proceedings of Symposia in Pure Mathematics, 10, ed. P. Caldeón, AMS, Providence, RI, 1967, 288–307 | DOI | MR

[8] M. Kontsevich, S. Vishik, Geometry of determinants of elliptic operators, Max-Planck-Institut für Mathematik, Bonn, Germany, 1994, Preprint MPI No 94-30 | MR

[9] M. Kontsevich, S. Vishik, “Geometry of determinants of elliptic operators”, Functional Analysis on the Eve of the 21st Century (Rutgers University, New Brunswick, NJ, October 24–27, 1993), Progress in Mathematic, 1, eds. S. Gindikin, J. Lepowsky, R. L. Wilson, Birkhäuser, Boston, 1995, 173–197 | DOI | MR | Zbl

[10] B. Enriquez, S. Khoroshkin, A. Radul, A. Rosly, V. Rubtsov, “Poisson–Lie aspects of classical $W$-algebras”, The Interplay Between Differential Geometry and Differential Equations, American Mathematical Society Translations: Ser. 2, 167, ed. V. V. Lychagin, AMS, Providence, RI, 1995, 37–59 | DOI | MR

[11] B. A. Khesin, I. Zakharevich, “Poisson–Lie groups of pseudodifferential symbols”, Comm. Math. Phys., 171:3 (1995), 475–530 | DOI | MR

[12] N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer, Berlin, 2004 | MR

[13] J.-P. Magnot, E. G. Reyes, $Diff_+(S^1)$-pseudo-differential operators and the Kadomtsev–Petviashvili hierarchy, arXiv: 1808.03791v1

[14] J. Dieudonné, Éléments d'Analyse, Gauthier-Villars, Paris, 1978

[15] B. Khesin, R. Wendt, The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 51, Springer, Berlin, 2009 | DOI | MR

[16] J. Bokobza-Haggiag, “Opérateurs pseudo-différentiels sur une variété différentiable”, Ann. Inst. Fourier (Grenoble), 19:1 (1969), 125–177 | DOI | MR

[17] H. Widom, “A complete symbolic calculus for pseudodifferential operators”, Bull. Sci. Math. (2), 104:1 (1980), 19–63 | MR

[18] J.-P. Magnot, “On $Diff(M)$-pseudo-differential operators and the geometry of non linear Grassmannians”, Mathematics, 4:1 (2016), 1–28, arXiv: 1407.1427

[19] A. Cardona, C. Ducourtioux, J.-P. Magnot, S. Paycha, “Weighted traces on pseudo-differential operators and geometry on loop groups”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 5:4 (2002), 503–540 | DOI | MR

[20] Ch. Kassel, “Le résidu non commutatif (d'après M. Wodzicki) Séminaire Bourbaki”, Astérisque, 1988/89:177–178, Exposé No. 708 (1989), 199–229 | MR

[21] J.-P. Magnot, “The Kähler form on the loop group and the radul cocycle on pseudo-differential operators”, GROUP 24: Physical and Mathematical Aspects of Symmetries, Proceedings of the 24th International Colloquium on Group Theorical Methods in Physics (Paris, France, 15–20 July, 2002), Institut of Physic Conference Series, 173, eds. J.-P. Gazeau, R. Kerner, J.-P. Antoine, S. Métens, J.-Y. Thibon, CRC Press, Boca Raton, FL, 2003, 671–675

[22] J.-P. Magnot, “Renormalized traces and cocycles on the algebra of $S^1$-pseudo-differential operators”, Lett. Math. Phys., 75:2 (2006), 111–127 | DOI | MR

[23] J. Figueroa-O'Farill, J. Mas, E. Ramos, “A one-parameter family of Hamiltonian structures for the KP hierarchy and a continuous deformation of the $W_{\rm KP}$ algebra”, Comm. Math. Phys., 158 (1993), 17–43 | DOI | MR

[24] V. Drinfel'd, “On some unsolved problems in quantum group theory”, Quantum Groups, Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, Heidelberg, 1992, 1–8 | DOI | MR

[25] M. Mulase, “Complete integrability of the Kadomtsev–Petvishvili equation”, Adv. Math., 54:1 (1984), 57–66 | DOI | MR

[26] M. Mulase, “Solvability of the super KP equation and a generalization of the Birkhoff decomposition”, Invent. Math., 92:1 (1988), 1–46 | DOI | MR

[27] A. Bilal, “Non-local matrix generalizations of $W$-algebras”, Comm. Math. Phys., 170:1 (1995), 117–150 | DOI | MR

[28] M. Adler, “On a trace functional for formal pseudo differential operators and the symplectic structure of Korteweg–de Vries type equations”, Invent. Math., 50:3 (1979), 219–248 | DOI | MR

[29] M. Wodzicki, “Local invariants in spectral asymmetry”, Inv. Math., 75:1 (1984), 143–178 | DOI | MR

[30] M. A. Semenov-Tyan-Shanskii, “Chto takoe klassicheskaya $r$-matritsa”, Funkts. analiz i ego pril., 17:4 (1983), 17–33 | DOI | MR | Zbl

[31] B. A. Kuperschmidt, KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems, Mathematical Surveys and Monographs, 78, AMS, Providence, RI, 2000 | DOI | MR

[32] I. McIntosh, “The quaternionic KP hierarchy and conformally immersed $2$-tori on the $4$-sphere”, Tohoku Math. J., 63:2 (2011), 183–215 | MR

[33] A. G. Reyman, M. A. Semenov-Tian-Shansky, “Reduction of Hamiltonian systems, affine Lie algebras and Lax equations. II”, Invent. Math., 63:3 (1981), 423–432 | DOI | MR

[34] A. Eslami Rad, E. G. Reyes, “The Kadomtsev–Petviashvili hierarchy and the Mulase factorization of formal Lie groups”, J. Geom. Mech., 5:3 (2013), 345–363 | DOI | MR

[35] B. Malgrange, “Sur l'intégrabilité des structures presque-complexes”, Séminaire Jean Leray, 1968–1969, no. 1, 1–8 | MR

[36] J.-P. Magnot, “Ambrose–Singer theorem on diffeological bundles and complete integrability of KP equations”, Internat. J. Geom. Meth. Modern Phys., 10:9 (2013), 1350043, 31 pp. | DOI | MR