Cahn–Hilliard equation with two spatial variables. Pattern formation
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 438-457 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Cahn–Hilliard equation in the case where its solution depends on two spatial variables, with homogeneous Dirichlet and Neumann boundary conditions, and also periodic boundary conditions. For these three boundary value problems, we study the problem of local bifurcations arising when changing stability by spatially homogeneous equilibrium states. We show that the nature of bifurcations that lead to spatially inhomogeneous solutions is strongly related to the choice of boundary conditions. In the case of homogeneous Dirichlet boundary conditions, spatially inhomogeneous equilibrium states occur in a neighborhood of a homogeneous equilibrium state, depending on both spatial variables. An alternative scenario is realized in analyzing the Neumann problem and the periodic boundary value problem. In these, as a result of bifurcations, invariant manifolds formed by spatially inhomogeneous solutions occur. The dimension of these manifolds ranges from 1 to 3. In analyzing three boundary value problems, we use methods of infinite-dimensional dynamical system theory and asymptotic methods. Using the integral manifold method together with the techniques of normal form theory allows us to analyze the stability of bifurcating invariant manifolds and also to derive asymptotic formulas for spatially inhomogeneous solutions forming these manifolds.
Mots-clés : Cahn–Hilliard equation, local bifurcation
Keywords: boundary value problem, stability, invariant manifold, attractor, spatially inhomogeneous equilibrium state.
@article{TMF_2021_207_3_a7,
     author = {A. N. Kulikov and D. A. Kulikov},
     title = {Cahn{\textendash}Hilliard equation with two spatial variables. {Pattern} formation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {438--457},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/}
}
TY  - JOUR
AU  - A. N. Kulikov
AU  - D. A. Kulikov
TI  - Cahn–Hilliard equation with two spatial variables. Pattern formation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 438
EP  - 457
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/
LA  - ru
ID  - TMF_2021_207_3_a7
ER  - 
%0 Journal Article
%A A. N. Kulikov
%A D. A. Kulikov
%T Cahn–Hilliard equation with two spatial variables. Pattern formation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 438-457
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/
%G ru
%F TMF_2021_207_3_a7
A. N. Kulikov; D. A. Kulikov. Cahn–Hilliard equation with two spatial variables. Pattern formation. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 438-457. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/

[1] J. W. Cahn, J. E. Hilliard, “Free energy of a nonuniform system I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI

[2] J. W. Cahn, “On spinodal decomposition”, Acta Metallurgica, 9:9 (1961), 795–801 | DOI

[3] A. Novick-Cohen, L. A. Segel, “Nonlinear aspects of the Cahn–Hilliard equation”, Phys. D, 10:3 (1984), 277–298 | DOI | MR

[4] J. E. Hilliard, “Spinodal decomposition”, Phase Transformations, ed. H. I. Aaronson, ASM, Metals Park, OH, 1970, 497–560

[5] D. S. Cohen, J. D. Murray, “A generalized diffusion model for growth and dispersal in a population”, J. Math. Biol., 12:2 (1981), 237–249 | DOI | MR

[6] M. E. Gurtin, “Multiphase thermomechanics with interfacial structure I. Heat conduction and the capillary balance law”, Arch. Rational Mech. Anal., 104:3 (1988), 195–221 | DOI | MR

[7] L. Modica, “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Rational Mech. Anal., 98:2 (1987), 123–142 | DOI | MR

[8] V. V. Pukhnachev, “Evolyutsionnye uravneniya i lagranzhevy koordinaty”, Dinamika sploshnoi sredy, 70, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1985, 127–141

[9] O. A. Frolovskaya, O. V. Admaev, V. V. Pukhnachev, “Special case of the Cahn–Hilliard equation”, Sib. elektron. matem. izv., 10 (2013), 324–334 | MR

[10] Y. Choi, “Dynamical bifurcation of the one-dimensional convective Cahn–Hilliard equation”, Korean J. Math., 22:4 (2014), 621–632 | DOI

[11] N. Alikakos, P. W. Bates, G. Fusco, “Slow motion for the Cahn–Hilliard equation in one space dimension”, J. Differ. Equ., 90:1 (1991), 81–135 | DOI | MR

[12] P. O. Mchedlov-Petrosyan, D. Yu. Kopiychenko, “Exact solutions for some modifications of the nonlinear Cahn–Hilliard equation”, Dopovidi NAN Ukraïni, 2013, no. 12, 88–94

[13] A. Kulikov, D. Kulikov, “Local bifurcations in the generalized Cahn–Hilliard equation”, Differential and Difference Equations with Applications (ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019), Springer Proceedings in Mathematics and Statistics, 333, eds. S. Pinelas, J. R. Graef, S. Hilger, P. Kloeden, C. Schinas, Springer, Cham, 2020, 167–179 | DOI | Zbl

[14] A. N. Kulikov, D. A. Kulikov, “Prostranstvenno neodnorodnye resheniya v dvukh kraevykh zadachakh dlya uravneniya Kana–Khilliarda”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 51:1 (2019), 21–32

[15] M. I. M. Copetti, C. M. Elliott, “Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy”, Numer. Math., 63:1 (1992), 39–65 | DOI | MR

[16] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Mezhvuz. sb., Izd-vo YaRGU, Yaroslavl, 1976, 114–129

[17] J. E. Marsden, M. F. McCracken, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976 | MR

[18] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR

[19] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR

[20] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–Khillarda, Kuramoto–Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI | MR

[21] A. N. Kulikov, D. A. Kulikov, “O vozmozhnosti realizatsii stsenariya Landau–Khopfa v zadache o kolebaniyakh truby pod vozdeistviem potoka zhidkosti”, TMF, 203:1 (2020), 78–90 | DOI | DOI | MR

[22] A. N. Kulikov, D. A. Kulikov, “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Matem. modelirovanie, 28:3 (2016), 33–50 | MR

[23] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v periodicheskoi kraevoi zadache dlya obobschennogo uravneniya Kuramoto–Sivashinskogo”, Avtomatika i telemekhanika, 2017, no. 11, 20–33 | DOI | MR

[24] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differents. uravneniya, 39:5 (2003), 584–601 | MR

[25] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differents. uravneniya, 39:6 (2003), 738–753 | DOI | MR