Keywords: boundary value problem, stability, invariant manifold, attractor, spatially inhomogeneous equilibrium state.
@article{TMF_2021_207_3_a7,
author = {A. N. Kulikov and D. A. Kulikov},
title = {Cahn{\textendash}Hilliard equation with two spatial variables. {Pattern} formation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {438--457},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/}
}
TY - JOUR AU - A. N. Kulikov AU - D. A. Kulikov TI - Cahn–Hilliard equation with two spatial variables. Pattern formation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 438 EP - 457 VL - 207 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/ LA - ru ID - TMF_2021_207_3_a7 ER -
A. N. Kulikov; D. A. Kulikov. Cahn–Hilliard equation with two spatial variables. Pattern formation. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 438-457. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a7/
[1] J. W. Cahn, J. E. Hilliard, “Free energy of a nonuniform system I. Interfacial free energy”, J. Chem. Phys., 28:2 (1958), 258–267 | DOI
[2] J. W. Cahn, “On spinodal decomposition”, Acta Metallurgica, 9:9 (1961), 795–801 | DOI
[3] A. Novick-Cohen, L. A. Segel, “Nonlinear aspects of the Cahn–Hilliard equation”, Phys. D, 10:3 (1984), 277–298 | DOI | MR
[4] J. E. Hilliard, “Spinodal decomposition”, Phase Transformations, ed. H. I. Aaronson, ASM, Metals Park, OH, 1970, 497–560
[5] D. S. Cohen, J. D. Murray, “A generalized diffusion model for growth and dispersal in a population”, J. Math. Biol., 12:2 (1981), 237–249 | DOI | MR
[6] M. E. Gurtin, “Multiphase thermomechanics with interfacial structure I. Heat conduction and the capillary balance law”, Arch. Rational Mech. Anal., 104:3 (1988), 195–221 | DOI | MR
[7] L. Modica, “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Rational Mech. Anal., 98:2 (1987), 123–142 | DOI | MR
[8] V. V. Pukhnachev, “Evolyutsionnye uravneniya i lagranzhevy koordinaty”, Dinamika sploshnoi sredy, 70, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1985, 127–141
[9] O. A. Frolovskaya, O. V. Admaev, V. V. Pukhnachev, “Special case of the Cahn–Hilliard equation”, Sib. elektron. matem. izv., 10 (2013), 324–334 | MR
[10] Y. Choi, “Dynamical bifurcation of the one-dimensional convective Cahn–Hilliard equation”, Korean J. Math., 22:4 (2014), 621–632 | DOI
[11] N. Alikakos, P. W. Bates, G. Fusco, “Slow motion for the Cahn–Hilliard equation in one space dimension”, J. Differ. Equ., 90:1 (1991), 81–135 | DOI | MR
[12] P. O. Mchedlov-Petrosyan, D. Yu. Kopiychenko, “Exact solutions for some modifications of the nonlinear Cahn–Hilliard equation”, Dopovidi NAN Ukraïni, 2013, no. 12, 88–94
[13] A. Kulikov, D. Kulikov, “Local bifurcations in the generalized Cahn–Hilliard equation”, Differential and Difference Equations with Applications (ICDDEA 2019, Lisbon, Portugal, July 1–5, 2019), Springer Proceedings in Mathematics and Statistics, 333, eds. S. Pinelas, J. R. Graef, S. Hilger, P. Kloeden, C. Schinas, Springer, Cham, 2020, 167–179 | DOI | Zbl
[14] A. N. Kulikov, D. A. Kulikov, “Prostranstvenno neodnorodnye resheniya v dvukh kraevykh zadachakh dlya uravneniya Kana–Khilliarda”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 51:1 (2019), 21–32
[15] M. I. M. Copetti, C. M. Elliott, “Numerical analysis of the Cahn–Hilliard equation with a logarithmic free energy”, Numer. Math., 63:1 (1992), 39–65 | DOI | MR
[16] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Mezhvuz. sb., Izd-vo YaRGU, Yaroslavl, 1976, 114–129
[17] J. E. Marsden, M. F. McCracken, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976 | MR
[18] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR
[19] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR
[20] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–Khillarda, Kuramoto–Sivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI | MR
[21] A. N. Kulikov, D. A. Kulikov, “O vozmozhnosti realizatsii stsenariya Landau–Khopfa v zadache o kolebaniyakh truby pod vozdeistviem potoka zhidkosti”, TMF, 203:1 (2020), 78–90 | DOI | DOI | MR
[22] A. N. Kulikov, D. A. Kulikov, “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Matem. modelirovanie, 28:3 (2016), 33–50 | MR
[23] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v periodicheskoi kraevoi zadache dlya obobschennogo uravneniya Kuramoto–Sivashinskogo”, Avtomatika i telemekhanika, 2017, no. 11, 20–33 | DOI | MR
[24] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: printsip koltsa”, Differents. uravneniya, 39:5 (2003), 584–601 | MR
[25] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Invariantnye tory odnogo klassa tochechnykh otobrazhenii: sokhranenie invariantnogo tora pri vozmuscheniyakh”, Differents. uravneniya, 39:6 (2003), 738–753 | DOI | MR