Mots-clés : singular perturbation
@article{TMF_2021_207_3_a6,
author = {I. S. Kashchenko and E. V. Krivets},
title = {Dynamics of a~singularly perturbed system of two differential equations with delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {424--437},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a6/}
}
TY - JOUR AU - I. S. Kashchenko AU - E. V. Krivets TI - Dynamics of a singularly perturbed system of two differential equations with delay JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 424 EP - 437 VL - 207 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a6/ LA - ru ID - TMF_2021_207_3_a6 ER -
I. S. Kashchenko; E. V. Krivets. Dynamics of a singularly perturbed system of two differential equations with delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 424-437. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a6/
[1] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI
[2] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron., 16:3 (1980), 347–355 | DOI
[3] H. Haken, Brain Dinamics. Synchronization and Activity Patterns in Pulse-Coupled Neural Nets with Delays and Noise, Springer Series in Synergetics, Springer, Berlin, 2002 | DOI | MR
[4] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer, New York, 2009 | DOI | MR
[5] S. A. Kaschenko, V. V. Maiorov, Modeli volnovoi pamyati, Librokom, M., 2009 | DOI | MR
[6] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer, Berlin, 2013 | MR
[7] A. S. Karavaev, Yu. M. Ishbulatov, V. I. Ponomarenko, B. P. Bezruchko, A. R. Kiselev, M. D. Prokhorov, “Autonomic control is a source of dynamical chaos in the cardiovascular system”, Chaos, 29:12 (2019), 121101, 8 pp. | DOI | MR
[8] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer, New York, 1993 | DOI | MR
[9] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun., 165:4–6 (1999), 279–292 | DOI
[10] A. A. Kashchenko, “Multistability in a system of two coupled oscillators with delayed feedback”, J. Differ. Equ., 266:1 (2019), 562–579 | DOI | MR
[11] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya, soderzhaschego zapazdyvanie”, Matem. zametki, 98:1 (2015), 85–100 | DOI | DOI | MR
[12] A. A. Kashchenko, “Relaxation modes of a system of diffusion coupled oscillators with delay”, Commun. Nonlinear Sci. Numer. Simul., 93 (2021), 105488, 10 pp. | DOI | MR
[13] V. O. Golubenets, “Relaksatsionnye kolebaniya v logisticheskom uravnenii s nepostoyannym zapazdyvaniem”, Matem. zametki, 107:6 (2020), 833–847 | DOI | DOI | MR
[14] S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, “Temporal dissipative solitons in time-delay feedback systems”, Phys. Rev. Lett., 123:5 (2019), 053901, 6 pp. | DOI | MR
[15] L. Larger, B. Penkovsky, Y. Maistrenko, “Virtual chimera states for delayed-feedback systems”, Phys. Rev. Lett., 111:5 (2013), 054103, 5 pp. | DOI
[16] E. V. Grigoreva, S. A. Kaschenko, “Normalizovannye kraevye zadachi v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Izvestiya vuzov. PND, 28:4 (2020), 361–382 | DOI
[17] I. Kashchenko, S. Kaschenko, “Infinite process of forward and backward bifurcations in the logistic equation with two delays”, Nonlinear Phenom. Complex Syst., 22:4 (2019), 407–412 | DOI
[18] A. G. Vladimirov, D. V. Turaev, “Model for passive mode locking in semiconductor lasers”, Phys. Rev. A, 72:3 (2005), 033808, 13 pp. | DOI
[19] A. Pimenov, J. Javaloyes, S. V. Gurevich, A. G. Vladimirov, “Light bullets in a time-delay model of a wide-aperture mode-locked semiconductor laser”, Philos. Trans. Roy. Soc. A, 376:2124, 20170372, 14 pp. | DOI | MR
[20] A. G. Vladimirov, D. Rachinskii, M. Wolfrum, “Modeling of passively mode-locked semiconductor lasers”, Nonlinear Laser Dynamics: From Quantum Dots to Cryptography, ed. K. Lüdge, John Wiley and Sons, New York, 2012, 183–216 | DOI
[21] S. Slepneva, B. Kelleher, B. O'Shaughnessy, S. P. Hegarty, A. G. Vladimirov, G. Huyet, “Dynamics of Fourier domain mode-locked lasers”, Opt. Express, 21:16 (2013), 19240–19251 | DOI
[22] S. A. Kaschenko, “Primenenie metoda normalizatsii k izucheniyu dinamiki differentsialno-raznostnogo uravneniya s malym mnozhitelem pri proizvodnoi”, Differents. uravneniya, 25:8 (1989), 1448–1451 | MR | Zbl
[23] I. S. Kaschenko, “Lokalnaya dinamika uravnenii s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2141–2150 | DOI | MR
[24] A. Fridman, Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968