Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 403-423

Voir la notice de l'article provenant de la source Math-Net.Ru

Integrals of motion are constructed from noncommutative (NC) Kepler dynamics, generating $SO(3)$, $SO(4)$, and $SO(1,3)$ dynamical symmetry groups. The Hamiltonian vector field is derived in action–angle coordinates, and the existence of a hierarchy of bi-Hamiltonian structures is highlighted. Then, a family of Nijenhuis recursion operators is computed and discussed.
Keywords: Bi-Hamiltonian structure, noncommutative phase space, recursion operator, Kepler dynamics, dynamical symmetry groups.
@article{TMF_2021_207_3_a5,
     author = {M. N. Hounkonnou and M. J. Landalidji and M. Mitrovi\'c},
     title = {Noncommutative {Kepler} dynamics: symmetry groups and {bi-Hamiltonian} structures},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {403--423},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/}
}
TY  - JOUR
AU  - M. N. Hounkonnou
AU  - M. J. Landalidji
AU  - M. Mitrović
TI  - Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 403
EP  - 423
VL  - 207
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/
LA  - ru
ID  - TMF_2021_207_3_a5
ER  - 
%0 Journal Article
%A M. N. Hounkonnou
%A M. J. Landalidji
%A M. Mitrović
%T Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 403-423
%V 207
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/
%G ru
%F TMF_2021_207_3_a5
M. N. Hounkonnou; M. J. Landalidji; M. Mitrović. Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 403-423. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/