Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 403-423
Voir la notice de l'article provenant de la source Math-Net.Ru
Integrals of motion are constructed from noncommutative (NC) Kepler dynamics, generating $SO(3)$, $SO(4)$, and $SO(1,3)$ dynamical symmetry groups. The Hamiltonian vector field is derived in action–angle coordinates, and the existence of a hierarchy of bi-Hamiltonian structures is highlighted. Then, a family of Nijenhuis recursion operators is computed and discussed.
Keywords:
Bi-Hamiltonian structure, noncommutative phase space, recursion
operator, Kepler dynamics, dynamical symmetry groups.
@article{TMF_2021_207_3_a5,
author = {M. N. Hounkonnou and M. J. Landalidji and M. Mitrovi\'c},
title = {Noncommutative {Kepler} dynamics: symmetry groups and {bi-Hamiltonian} structures},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {403--423},
publisher = {mathdoc},
volume = {207},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/}
}
TY - JOUR AU - M. N. Hounkonnou AU - M. J. Landalidji AU - M. Mitrović TI - Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 403 EP - 423 VL - 207 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/ LA - ru ID - TMF_2021_207_3_a5 ER -
%0 Journal Article %A M. N. Hounkonnou %A M. J. Landalidji %A M. Mitrović %T Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 403-423 %V 207 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/ %G ru %F TMF_2021_207_3_a5
M. N. Hounkonnou; M. J. Landalidji; M. Mitrović. Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 403-423. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/