@article{TMF_2021_207_3_a5,
author = {M. N. Hounkonnou and M. J. Landalidji and M. Mitrovi\'c},
title = {Noncommutative {Kepler} dynamics: symmetry groups and {bi-Hamiltonian} structures},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {403--423},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/}
}
TY - JOUR AU - M. N. Hounkonnou AU - M. J. Landalidji AU - M. Mitrović TI - Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 403 EP - 423 VL - 207 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/ LA - ru ID - TMF_2021_207_3_a5 ER -
%0 Journal Article %A M. N. Hounkonnou %A M. J. Landalidji %A M. Mitrović %T Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 403-423 %V 207 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/ %G ru %F TMF_2021_207_3_a5
M. N. Hounkonnou; M. J. Landalidji; M. Mitrović. Noncommutative Kepler dynamics: symmetry groups and bi-Hamiltonian structures. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 403-423. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a5/
[1] M. Livio, The Golden Ratio. The Story of Phi, the World's Most Astonishing Number, Broadway Books, New York, 2003 | MR
[2] J. Zhou, On geometry and symmetry of Kepler systems. I, arXiv: 1708.05504
[3] J. R. Voelkel, Johannes Kepler and the New Astronomy, Oxford Portraits in Science, Oxford Univ. Press, New York, 1999
[4] J. Kepler, New Astronomy, Cambridge Univ. Press, New York, 1992
[5] J. Kepler, The Harmony of the World, Memoirs of the American Philosophical Society, 209, American Philosophical Society, Philadelphia, PA, 1997 | MR
[6] J. B. Brackenridge, The Key to Newton's Dynamics: The Kepler Problem and the Principia, UC Press, Berkeley, CA, 1995 | MR
[7] W. Lenz, “Über den Bewegungsverlauf und die Quantenzustände des gestörten Keplerbewegung”, Z. Phys., 24 (1924), 197–207 | DOI
[8] W. Pauli, Jr., “Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik”, Z. Phys., 36 (1926), 336–363 | DOI
[9] V. Fock, “Zur Theorie des Wasserstoffatoms”, Z. Phys., 98 (1935), 145–154 | DOI
[10] V. Bargmann, “Zur Theorie des Wasserstoffatoms. Bemerkungen zur gleichnamigen Arbeit von V. Fock”, Z. Phys., 99 (1936), 576–582 | DOI
[11] M. Bander, C. Itzykson, “Group theory and the hydrogen atom {(I)}”, Rev. Modern Phys., 38:2 (1966), 330–345 | DOI | MR
[12] M. Bander, C. Itzykson, “Group theory and the hydrogen atom (II)”, Rev. Modern Phys., 38:2 (1966), 346–358 | DOI | MR
[13] L. Hulthén, “Über die quantenmechanische Herleitung der Balmerterme”, Z. Phys., 86 (1933), 21–23 | DOI
[14] D. M. Fradkin, “Existence of the dynamic symmetries $O_{4}$ and $SU_{3}$ for all classical central potential problems”, Prog. Theor. Phys., 37:5 (1967), 798–812 | DOI
[15] H. Bacry, H. Ruegg, J. M. Souriau, “Dynamical groups and spherical potentials in classical mechanics”, Commun. Math. Phys., 3:5 (1966), 323–333 | DOI | MR
[16] G. Györgyi, “Kepler's equation, Fock variables, Bacry's generators and Dirac brackets”, Nuovo Cimento A, 53 (1968), 717–736 | DOI
[17] A. Guichardet, “Histoire d'un vecteur tricentenaire”, Gaz. Math., 117 (2008), 23–33 | MR
[18] J. Moser, “Regularization of Kepler's problem and the averaging method on a manifold”, Commun. Pure Appl. Math., 23 (1970), 609–636 | DOI | MR
[19] T. Ligon, M. Schaaf, “On the global symmetry of the classical Kepler problem”, Rep. Math. Phys., 9:3 (1976), 281–300 | DOI | MR
[20] D. E. Chang, J. E. Marsden, “Geometric derivation of Delaunay variables and geometric phases”, Celest. Mech. Dyn. Astron., 86:2 (2003), 185–208 | DOI | MR
[21] A. Chenciner, R. Montgomery, “A remarkable periodic solution of the three-body problem in the case of equal masses”, Ann. Math., 152:3 (2000), 881–901 | DOI | MR
[22] R. H. Cushman, J. J. Duistermaat, “A characterization of the Ligon–Schaaf regularization map”, Commun. Pure Appl., 50:8 (1997), 773–787 | 3.0.CO;2-3 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[23] J. Milnor, “On the geometry of the Kepler problem”, Amer. Math. Monthly, 90:6 (1983), 353–365 | DOI | MR
[24] C.-M. Marle, “A property of conformally Hamiltonian vector fields; application to the Kepler problem”, J. Geom. Mech., 4:2 (2012), 181–206 | DOI | MR
[25] G. Vilasi, Hamiltonian Dynamics, World Sci., Singapore, 2001 | DOI | MR
[26] R. Liouville, “Sur le mouvement d'un corps solide pesant suspendu par l'un de ses points”, Acta Math., 20:1 (1897), 239–284 | DOI | MR
[27] H. Poincaré, “Sur les quadratures mécaniques”, Bull. Astron., 16 (1899), 382–387
[28] F. Magri, “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19:5 (1978), 1156–1162 | DOI | MR
[29] I. M. Gelfand, I. Ya. Dorfman, “Skobka Skhoutena i gamiltonovy operatory”, Funkts. analiz i ego pril., 14:3 (1980), 71–74 | DOI | MR | Zbl
[30] G. Vilasi, “On the Hamiltonian structures of the Korteweg–de Vries and sine-Gordon theories”, Phys. Lett. B, 94:2 (1980), 195–198 | DOI | MR
[31] S. De Filippo, G. Vilasi, G. Marmo, M. Salerno, “A new characterization of completely integrable systems”, Nuovo Cimento B, 83:2 (1984), 97–112 | DOI | MR
[32] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary ways”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR
[33] M. Santoprete, “On the relationship between two notions of compatibility for bi-Hamiltonian systems”, SIGMA, 11 (2015), 089, 11 pp. | MR
[34] G. Marmo, G. Vilasi, “When do recursion operators generate new conservation laws?”, Phys. Lett. B, 277:1–2 (1992), 137–140 | DOI | MR
[35] Y. A. Grigoryev, A. V. Tsiganov, “On bi-Hamiltonian formulation of the perturbed Kepler problem”, J. Phys. A: Math. Theor., 48:17 (2015), 175206, 7 pp. | DOI | MR
[36] R. G. Smirnov, “Magri–Morosi–Gel'fand–Dorfman's bi-Hamiltonian constructions in the action-angle variables”, J. Math. Phys., 38:12 (1997), 6444–6454 | DOI | MR
[37] W. Oevel, “A geometrical approach to integrable systems admitting time dependent invariants”, Topics in Soliton Theory and Exactly Solvable Nonlinear Equations, Proceedings of the Conference on Nonlinear Evolution Equations, Solitons and the Inverse Scattering Transform (Oberwolfach, Germany, July 27 – August 2, 1986), eds. M. Ablowitz, B. Fuchssteiner, M. Kruskal, World Sci., Singapore, 1987, 108–124 | MR
[38] R. L. Fernandes, “On the master symmetries and bi-Hamiltonian structure of the Toda lattice”, J. Phys. A: Math. Gen., 26:15 (1993), 3797–3803 | DOI | MR
[39] R. G. Smirnov, “The action-angle coordinates revisited: bi-Hamiltonian systems”, Rep. Math. Phys., 44:1–2 (1999), 199–204 | DOI | MR
[40] O. I. Bogoyavlenskij, “Theory of tensor invariants of integrable Hamiltonian systems. I. Incompatible Poisson structures”, Commun. Math. Phys., 180:3 (1996), 529–586 | DOI | MR
[41] M. F. Rañada, “A system of $n=3$ coupled oscillators with magnetic terms: symmetries and integrals of motion”, SIGMA, 1 (2005), 004, 7 pp.
[42] R. L. Fernandes, “Completely integrable bi-Hamiltonian systems”, J. Dyn. Differ. Equ., 6:1 (1994), 53–69 | DOI | MR
[43] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[44] B. Vakili, P. Pedram, S. Jalalzadeh, “Late time acceleration in a deformed phase space model of dilaton cosmology”, Phys. Lett. B, 687:2–3 (2010), 119–123 | DOI
[45] B. Malekolkalami, K. Atazadeh, B. Vakili, “Late time acceleration in a non-commutative model of modified cosmology”, Phys. Lett. B, 739 (2014), 400–404 | DOI | MR
[46] N. Khosravi, S. Jalalzadeh, H. R. Sepangi, “Non-commutative multi-dimensional cosmology”, JHEP, 01 (2006), 134, 11 pp. | DOI | MR
[47] G. Rudolph, M. Schmidt, Differential Geometry and Mathematical Physics. Part I. Manifolds, Lie Group and Hamiltonian Systems, Springer, Dordrecht, 2013 | DOI | MR
[48] B. Dubrovin, Bihamiltonian Structures of PDEs and Frobenius Manifolds, Lectures at the ICTP Summer School “Poisson Geometry” (Trieste, July 11–15, 2005), SISSA, Trieste, Italia, 2005
[49] M. N. Hounkonnou, M. J. Landalidji, E. Balo\"{i}tcha, “Recursion operator in a noncommutative Minkowski phase space”, Geometric Methods in Physics XXXVI (Białowie.{z}a, Poland, July 2–8, 2017), Trends in Mathematics, eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2019, 83–93 | DOI | MR | Zbl
[50] M. N. Hounkonnou, M. J. Landalidji, “Hamiltonian dynamics for the Kepler problem in a deformed phase space”, Geometric Methods in Physics XXXVII (Białowie.{z}a, Poland, July 1 – 7, 2018), Trends in Mathematics, eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2019, 34–48 | DOI
[51] J. Dieudonné, Eléments d'Analyse, Tome 3, Gauthiers-Villars, Paris, 1970 | MR
[52] R. Abraham, J. E. Marsden, Foundation of Mechanics, Addison-Wesley, New York, 1978 | MR
[53] V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics, 60, Springer, New York, 1978 | DOI | MR
[54] J. Liouville, “Note sur l'intégration des équations différentielles de la Dynamique”, J. Math. Pure Appl., 20 (1855), 137–138
[55] C. Canute, A. Tabacco, Mathematical Analysis I, Springer, Milan, 2008
[56] M. Born, Lektsii po atomnoi mekhanike, ONTI, M., 1934
[57] V. I. Arnold, V. V. Kozlov, A. I. Neishtadt, “Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki”, Dinamicheskie sistemy – 3, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 3, VINITI, M., 1985, 5–290 | MR | MR | Zbl
[58] A. Morbidelli, Sovremennaya nebesnaya mekhanika. Aspekty dinamiki Solnechnoi sistemy, IKI, M.–Izhevsk, 2014
[59] R. Caseiro, “Master integrals, superintegrability and quadratic algebras”, Bull. Sci. Math., 126:8 (2002), 617–630 | DOI | MR
[60] P. A. Damianou, “Symmetries of Toda equations”, J. Phys. A: Math. Gen., 26:15 (1993), 3791–3796 | DOI | MR
[61] M. F. Rañada, “Superintegrability of the Calogero–Moser system: constants of motion, master symmetries, and time-dependent symmetries”, J. Math. Phys., 40:1 (1999), 236–247 | DOI | MR