Relaxation oscillations in a logistic equation with past state-dependent delay
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 389-402 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A logistic equation with a delay depending on the state in the past is considered. We study the question of the existence of nonlocal relaxation periodic solutions of this equation for large values of the parameter. The characteristics (for example, period and extreme values) of solutions that we find are compared with similar characteristics of solutions of other modifications of this equation. Asymptotic estimates for the period and the maximum and minimum values are obtained. The study is carried out by the large parameter method.
Keywords: delay equation, nonconstant delay, asymptotics, large parameter method.
Mots-clés : relaxation solution
@article{TMF_2021_207_3_a4,
     author = {V. O. Golubenets},
     title = {Relaxation oscillations in a~logistic equation with past state-dependent delay},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {389--402},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/}
}
TY  - JOUR
AU  - V. O. Golubenets
TI  - Relaxation oscillations in a logistic equation with past state-dependent delay
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 389
EP  - 402
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/
LA  - ru
ID  - TMF_2021_207_3_a4
ER  - 
%0 Journal Article
%A V. O. Golubenets
%T Relaxation oscillations in a logistic equation with past state-dependent delay
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 389-402
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/
%G ru
%F TMF_2021_207_3_a4
V. O. Golubenets. Relaxation oscillations in a logistic equation with past state-dependent delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 389-402. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/

[1] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl

[2] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. Sci., 50:4 (1948), 221–246 | DOI

[3] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61

[4] V. O. Golubenets, “Relaksatsionnye kolebaniya v logisticheskom uravnenii s nepostoyannym zapazdyvaniem”, Matem. zametki, 107:6 (2020), 833–847 | DOI | DOI | MR

[5] M. C. Mackey, “Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors”, J. Econom. Theory, 48:2 (1989), 497–509 | DOI | MR

[6] Yu. S. Kolesov, D. I. Shvitra, “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskii matem. sb., 15:4 (1975), 153–167

[7] T. Insperger, D. A. W. Barton, G. Stépán, “Criticality of Hopf bifurcation in state-dependent delay model of turning processes”, Internat. J. Non-Linear Mech., 43:2 (2008), 140–149 | DOI

[8] M. G. Zager, P. M. Schlosser, H. T. Tran, “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bull. Math. Biol., 69:1 (2007), 93–117 | DOI | MR