Mots-clés : relaxation solution
@article{TMF_2021_207_3_a4,
author = {V. O. Golubenets},
title = {Relaxation oscillations in a~logistic equation with past state-dependent delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {389--402},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/}
}
V. O. Golubenets. Relaxation oscillations in a logistic equation with past state-dependent delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 389-402. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a4/
[1] A. Yu. Kolesov, Yu. S. Kolesov, “Relaksatsionnye kolebaniya v matematicheskikh modelyakh ekologii”, Tr. MIAN, 199 (1993), 3–124 | MR | Zbl
[2] G. E. Hutchinson, “Circular causal systems in ecology”, Ann. N. Y. Acad. Sci., 50:4 (1948), 221–246 | DOI
[3] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61
[4] V. O. Golubenets, “Relaksatsionnye kolebaniya v logisticheskom uravnenii s nepostoyannym zapazdyvaniem”, Matem. zametki, 107:6 (2020), 833–847 | DOI | DOI | MR
[5] M. C. Mackey, “Commodity price fluctuations: price dependent delays and nonlinearities as explanatory factors”, J. Econom. Theory, 48:2 (1989), 497–509 | DOI | MR
[6] Yu. S. Kolesov, D. I. Shvitra, “Matematicheskoe modelirovanie protsessa goreniya v kamere zhidkostnogo raketnogo dvigatelya”, Litovskii matem. sb., 15:4 (1975), 153–167
[7] T. Insperger, D. A. W. Barton, G. Stépán, “Criticality of Hopf bifurcation in state-dependent delay model of turning processes”, Internat. J. Non-Linear Mech., 43:2 (2008), 140–149 | DOI
[8] M. G. Zager, P. M. Schlosser, H. T. Tran, “A delayed nonlinear PBPK model for genistein dosimetry in rats”, Bull. Math. Biol., 69:1 (2007), 93–117 | DOI | MR