Local solutions of the fast–slow model of an optoelectronic oscillator with delay
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 376-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a difference–differential model of an optoelectronic oscillator that is a modification of the Ikeda equation with delay. We analyze the stability of the zero equilibrium state. We note that the number of roots of the characteristic equation of the linearized problem with the real part that is close to zero increases without bound for order parameter values tending to bifurcational ones. The asymptotics of such roots determines the asymptotic representation of solutions of the original problem that appear in a neighborhood of zero. An explicit change of variables allows finally obtaining equations of the special form for slow amplitudes that are independent of a small parameter and satisfy boundary conditions of the type of periodicity in one of the variables. It is convenient to consider such a variable as a spatial one, although the “fast” time plays this role. We determine amplitudes and frequencies of oscillatory components of the solutions. We formulate results about the correspondence between local solutions of the original system and nonlocal solutions of the partial differential equations playing the role of normal forms.
Keywords: differential equation, delay, small parameter, asymptotics, boundary value problem.
Mots-clés : bifurcation
@article{TMF_2021_207_3_a3,
     author = {D. V. Glazkov},
     title = {Local solutions of the~fast{\textendash}slow model of an optoelectronic oscillator with delay},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {376--388},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/}
}
TY  - JOUR
AU  - D. V. Glazkov
TI  - Local solutions of the fast–slow model of an optoelectronic oscillator with delay
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 376
EP  - 388
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/
LA  - ru
ID  - TMF_2021_207_3_a3
ER  - 
%0 Journal Article
%A D. V. Glazkov
%T Local solutions of the fast–slow model of an optoelectronic oscillator with delay
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 376-388
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/
%G ru
%F TMF_2021_207_3_a3
D. V. Glazkov. Local solutions of the fast–slow model of an optoelectronic oscillator with delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/

[1] G. Giacomelli, A. Politi, “Relationship between delayed and spatially extended dynamical systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI

[2] S. Yanchuk, G. Giacomelli, “Dynamical systems with multiple long-delayed feedbacks: multiscale analysis and spatiotemporal equivalence”, Phys. Rev. E, 92:4 (2015), 042903, 12 pp. | DOI | MR

[3] A. Pimenov, S. Slepneva, G. Huyet, A. G. Vladimirov, “Dispersive time-delay dynamical systems”, Phys. Rev. Lett., 118:19 (2017), 193901, 6 pp. | DOI

[4] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback”, Phys. D, 145:1–2 (2000), 110–129 | DOI | MR

[5] D. V. Glazkov, “Local dynamics of complex DDE with large delay feedback”, Nonlinear Phenom. Complex Syst., 13:4 (2010), 432–437 | MR

[6] D. V. Glazkov, “Lokalnaya dinamika uravneniya vtorogo poryadka s bolshim eksponentsialno raspredelennym zapazdyvaniem i suschestvennym treniem”, Model. i analiz inform. sistem, 22:1 (2015), 65–73 | DOI | MR

[7] E. V. Grigorieva, S. A. Kaschenko, D. V. Glazkov, “Local dynamics of a model of an opto-electronic oscillator with delay”, Aut. Control Comp. Sci., 52:7 (2018), 700–707 | DOI

[8] E. V. Grigoreva, S. A. Kaschenko, “Medlennye i bystrye kolebaniya v modeli optiko-\allowbreakelektronnogo ostsillyatora s zapazdyvaniem”, Dokl. RAN, 484:1 (2019), 21–25 | DOI

[9] E. V. Grigoreva, S. A. Kaschenko, “Normalizovannye kraevye zadachi v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Izvestiya vuzov. PND, 28:4 (2020), 361–382 | DOI

[10] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR

[11] E. F. Mischenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR

[12] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, “Teoriya bifurkatsii”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 5 (1986), 5–218 | MR | Zbl

[13] A. L. Prigorovskii, V. M. Sandalov, T. A. Tananaeva, Zadachi po teorii kolebanii, ustoichivosti dvizheniya i kachestvennoi teorii differentsialnykh uravnenii. Chast 6. “Bystrye” i “medlennye” dvizheniya. Razryvnye kolebaniya i avtokolebaniya, Uchebno-metodicheskoe posobie, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2017

[14] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | DOI | MR

[15] K. Ikeda, K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, Phys. D, 29:1–2 (1987), 223–235 | DOI

[16] M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators”, Phys. Rev. E, 79:2 (2009), 026208, 15 pp. | DOI

[17] J. H. Talla Mbé, A. F. Talla, G. R. G. Chengui, A. Coillet, L. Larger, P. Woafo, Y. K. Chembo, “Mixed-mode oscillations in slow-fast delay optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902, 6 pp. | DOI

[18] I. S. Kaschenko, S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type”, Internat. J. Bifur. Chaos, 25:11 (2015), 1550142, 27 pp. | DOI | MR