Mots-clés : bifurcation
@article{TMF_2021_207_3_a3,
author = {D. V. Glazkov},
title = {Local solutions of the~fast{\textendash}slow model of an optoelectronic oscillator with delay},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {376--388},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/}
}
D. V. Glazkov. Local solutions of the fast–slow model of an optoelectronic oscillator with delay. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 376-388. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a3/
[1] G. Giacomelli, A. Politi, “Relationship between delayed and spatially extended dynamical systems”, Phys. Rev. Lett., 76:15 (1996), 2686–2689 | DOI
[2] S. Yanchuk, G. Giacomelli, “Dynamical systems with multiple long-delayed feedbacks: multiscale analysis and spatiotemporal equivalence”, Phys. Rev. E, 92:4 (2015), 042903, 12 pp. | DOI | MR
[3] A. Pimenov, S. Slepneva, G. Huyet, A. G. Vladimirov, “Dispersive time-delay dynamical systems”, Phys. Rev. Lett., 118:19 (2017), 193901, 6 pp. | DOI
[4] M. Bestehorn, E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Order parameters for class-B lasers with a long time delayed feedback”, Phys. D, 145:1–2 (2000), 110–129 | DOI | MR
[5] D. V. Glazkov, “Local dynamics of complex DDE with large delay feedback”, Nonlinear Phenom. Complex Syst., 13:4 (2010), 432–437 | MR
[6] D. V. Glazkov, “Lokalnaya dinamika uravneniya vtorogo poryadka s bolshim eksponentsialno raspredelennym zapazdyvaniem i suschestvennym treniem”, Model. i analiz inform. sistem, 22:1 (2015), 65–73 | DOI | MR
[7] E. V. Grigorieva, S. A. Kaschenko, D. V. Glazkov, “Local dynamics of a model of an opto-electronic oscillator with delay”, Aut. Control Comp. Sci., 52:7 (2018), 700–707 | DOI
[8] E. V. Grigoreva, S. A. Kaschenko, “Medlennye i bystrye kolebaniya v modeli optiko-\allowbreakelektronnogo ostsillyatora s zapazdyvaniem”, Dokl. RAN, 484:1 (2019), 21–25 | DOI
[9] E. V. Grigoreva, S. A. Kaschenko, “Normalizovannye kraevye zadachi v modeli optiko-elektronnogo ostsillyatora s zapazdyvaniem”, Izvestiya vuzov. PND, 28:4 (2020), 361–382 | DOI
[10] E. F. Mischenko, N. Kh. Rozov, Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR
[11] E. F. Mischenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995 | MR
[12] V. I. Arnold, V. S. Afraimovich, Yu. S. Ilyashenko, L. P. Shilnikov, “Teoriya bifurkatsii”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 5 (1986), 5–218 | MR | Zbl
[13] A. L. Prigorovskii, V. M. Sandalov, T. A. Tananaeva, Zadachi po teorii kolebanii, ustoichivosti dvizheniya i kachestvennoi teorii differentsialnykh uravnenii. Chast 6. “Bystrye” i “medlennye” dvizheniya. Razryvnye kolebaniya i avtokolebaniya, Uchebno-metodicheskoe posobie, Nizhegorodskii gos. un-t, Nizhnii Novgorod, 2017
[14] E. Khairer, G. Vanner, Reshenie obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999 | DOI | MR
[15] K. Ikeda, K. Matsumoto, “High-dimensional chaotic behavior in systems with time-delayed feedback”, Phys. D, 29:1–2 (1987), 223–235 | DOI
[16] M. Peil, M. Jacquot, Y. K. Chembo, L. Larger, T. Erneux, “Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators”, Phys. Rev. E, 79:2 (2009), 026208, 15 pp. | DOI
[17] J. H. Talla Mbé, A. F. Talla, G. R. G. Chengui, A. Coillet, L. Larger, P. Woafo, Y. K. Chembo, “Mixed-mode oscillations in slow-fast delay optoelectronic systems”, Phys. Rev. E, 91:1 (2015), 012902, 6 pp. | DOI
[18] I. S. Kaschenko, S. A. Kaschenko, “Local dynamics of the two-component singular perturbed systems of parabolic type”, Internat. J. Bifur. Chaos, 25:11 (2015), 1550142, 27 pp. | DOI | MR