Fourier transformation method for some types of nonlinear partial differential equations
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 361-375
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We propose a method for analyzing the Cauchy problem for a wide class of equations with power-like nonlinearities. The method is based on the Fourier transformation, which allows reducing the original equation to an integro-differential one. We prove the existence of solutions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
equations with power-like nonlinearities, integro-differential equation, Paley–Wiener–Schwarz theorems on Fourier image.
Mots-clés : Fourier transformation
                    
                  
                
                
                Mots-clés : Fourier transformation
@article{TMF_2021_207_3_a2,
     author = {V. I. Gishlarkaev},
     title = {Fourier transformation method for some types of nonlinear partial differential equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--375},
     publisher = {mathdoc},
     volume = {207},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a2/}
}
                      
                      
                    TY - JOUR AU - V. I. Gishlarkaev TI - Fourier transformation method for some types of nonlinear partial differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 361 EP - 375 VL - 207 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a2/ LA - ru ID - TMF_2021_207_3_a2 ER -
V. I. Gishlarkaev. Fourier transformation method for some types of nonlinear partial differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 361-375. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a2/