Nonwandering continuum possessing the Wada property
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 505-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Dynamic systems acting on the plane and possessing the Wada property have been observed. There exist only two topological types, symmetric and antisymmetric, of dissipative dynamic systems with the nonwandering continuum being a common boundary of three regions. An antisymmetric dynamic system with the nonwandering continuum can be transformed into a dynamic system with an invariant vortex street without fixed points. A further factorization procedure allows obtaining a dynamic system having the Wada property with the nonwandering continuum being a common boundary of any finite number of regions. Moreover, following this strategy, it is possible to construct a Birkhoff curve that is a common boundary of two regions (problem $1100$).
Keywords: dynamic system, Wada basin, Wada property, Birkhoff curve, nonwandering set, rotation number, Schnirelmann density, PostScript.
Mots-clés : indecomposable continuum (atom), composant
@article{TMF_2021_207_3_a10,
     author = {D. W. Serow},
     title = {Nonwandering continuum possessing {the~Wada} property},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {505--520},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a10/}
}
TY  - JOUR
AU  - D. W. Serow
TI  - Nonwandering continuum possessing the Wada property
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 505
EP  - 520
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a10/
LA  - ru
ID  - TMF_2021_207_3_a10
ER  - 
%0 Journal Article
%A D. W. Serow
%T Nonwandering continuum possessing the Wada property
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 505-520
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a10/
%G ru
%F TMF_2021_207_3_a10
D. W. Serow. Nonwandering continuum possessing the Wada property. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 505-520. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a10/

[1] A. V. Osipov, D. W. Serow, “Rotation number additive theory for Birkhoff curves”, Nonlinear Phenom. Complex Syst., 20:4 (2017), 382–393

[2] A. V. Osipov, D. W. Serow, “Fractional densities for the Wada basins”, Nonlinear Phenom. Complex Syst., 21:4 (2018), 389–394

[3] A. V. Osipov, I. A. Kovalew, D. W. Serow, “Additive dimension theory for Birkhoff curves”, Nonlinear Phenom. Complex Syst., 22:2 (2019), 164–176

[4] G. D. Birkhoff, “Sur quelques courbes fermées remarquables”, Bull. Soc. Math. France, 60 (1932), 1–26 | DOI | MR

[5] M. Charpentier, “Sur quelques propriétés des courbes de M. Birkhoff”, Bull. Soc. Math. France, 62 (1934), 193–224 | DOI | MR | Zbl

[6] M. Charpentier, “Sur des courbes fermées analogues aux courbes de M. Birkhoff”, J. Math. Pures Appl., 14 (1935), 1–48

[7] K. Kuratovskii, Topologiya, Mir, M., 1966

[8] S. van Strien, “One-dimensional versus two-dimensional dynamics”, Open Problems in Topology, eds. J. van Mill, G. M. Reed, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990, 646–652 | MR

[9] D. Birkgof, Dinamicheskie sistemy, Regulyarnaya i khaoticheskaya dinamika, VIII, RKhD, Izhevsk, 1999 | MR

[10] K. Borsuk, Theory of retracts, Monografie Matematyczne, 44, Państwowe Wydawnictwo Naukowe, Warsaw, 1967 | MR

[11] J. A. Kennedy, “A brief history of indecomposable continua”, Continua: With the Houston Problem Book (Cincinnati, OH, USA, January 12–15, 1994), Lecture Notes in Pure and Applied Mathematics, 170, eds. H. Cook, W. T. Ingram, K. T. Kuperberg, A. Lelek, P. Minc, Marcel Dekker, New York, 1995, 103–126 | MR | Zbl

[12] D. W. Serow, “Dissipative dynamical system with lakes of Vada”, Nonlinear Phenom. Complex Syst., 9:4 (2006), 394–398 | MR

[13] M. V. Makarova, I. A. Kovalew, D. W. Serow, “Antisymmetric Wada basins prime example: Unstable antisaddles case”, Nonlinear Phenom. Complex Syst., 21:2 (2018), 188–193

[14] C. Carathéodory, “Über die Begrenzung der einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370 | DOI | MR

[15] E. F. Collingwood, A. J. Lohwater, The Theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, 56, Cambridge Univ. Press, Cambridge, 1966 | MR

[16] Y. Coudene, “Pictures of hyperbolic dynamical systems”, Notices Amer. Math. Soc., 53:1 (2006), 8–13 | MR

[17] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Trudy MIAN, 90 (1967), 3–210 | MR | Zbl

[18] R. V. Plykin, “Istochniki i stoki $A$-diffeomorfizmov poverkhnostei”, Matem. sb., 94:2(6) (1974), 243–264 | DOI | MR | Zbl

[19] J. Palis, Jr., W. de Melo, Geometric Theory of Dynamical Systems: An Introduction, Springer, New York, 1982 | MR

[20] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | MR | Zbl

[21] S. Smale, “Finding a horseshoe on the beaches of Rio”, Math. Intell., 20:1 (1998), 39–44 | DOI | MR

[22] N. V. Maygula, P. D. Serowa, I. A. Kovalew, D. W. Serow, “Plane quazicrystals and four colours problem: Trivalent graph element construction”, Nonlinear Dynamics and Applications, 26, State Institute of Economy Finance Law and Technology, Gatchina, Minsk, 2020, 346–357