@article{TMF_2021_207_3_a1,
author = {Xiaojuan Duan and Chuanzhong Li and Jing Ping Wang},
title = {Multi-component {Toda} lattice in centro-affine ${\mathbb R}^n$},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {347--360},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a1/}
}
TY - JOUR
AU - Xiaojuan Duan
AU - Chuanzhong Li
AU - Jing Ping Wang
TI - Multi-component Toda lattice in centro-affine ${\mathbb R}^n$
JO - Teoretičeskaâ i matematičeskaâ fizika
PY - 2021
SP - 347
EP - 360
VL - 207
IS - 3
UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a1/
LA - ru
ID - TMF_2021_207_3_a1
ER -
Xiaojuan Duan; Chuanzhong Li; Jing Ping Wang. Multi-component Toda lattice in centro-affine ${\mathbb R}^n$. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 347-360. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a1/
[1] H. Hasimoto, “A soliton on a vortex filament”, J. Fluid Mech., 51:3 (1972), 477–485 | DOI | MR
[2] M. Fels, P. J. Olver, “Moving coframes. I. A practical algorithm”, Acta Appl. Math., 51:2 (1998), 161–213 | DOI | MR | Zbl
[3] M. Fels, P. J. Olver, “Moving coframes. II. Regularization and theoretical foundations”, Acta Appl. Math., 55:2 (1999), 127–208 | DOI | MR
[4] G. Marí Beffa, “Poisson geometry of differential invariants of curves in some nonsemisimple homogeneous spaces”, Proc. Amer. Math. Soc., 134:3 (2006), 779–791 | DOI | MR
[5] G. Marí Beffa, “Bi-Hamiltonian flows and their realizations as curves in real semisimple homogeneous manifolds”, Pacific J. Math., 247:1 (2010), 163–188 | DOI | MR
[6] E. L. Mansfield, G. Marí Beffa, J. P. Wang, “Discrete moving frames and integrable systems”, Found. Comput. Math., 13:4 (2013), 545–582 | DOI | MR
[7] G. Marí Beffa, J. P. Wang, “Hamiltonian evolutions of twisted polygons in $\mathbb {RP}^n$”, Nonlinearity, 26:9 (2013), 2515–2551 | DOI | MR
[8] E. L. Mansfield, A. Rojo-Echeburúa, P. E. Hydon, L. Peng, “Moving frames and Noether's finite difference conservation laws I”, Trans. Math. Appl., 3:1 (2019), 004, 47 pp. | DOI | MR
[9] E. L. Mansfield, A. Rojo-Echeburúa, “Moving frames and Noether's finite difference conservation laws II”, Trans. Math. Appl., 3:1 (2019), 005, 26 pp. | DOI | MR
[10] B. Wang, X.-K. Chang, X.-B. Hu, S.-H. Li, “On moving frames and Toda lattices of BKP and CKP types”, J. Phys. A, 51:32 (2018), 324002, 22 pp. | DOI | MR
[11] G. Marí Beffa, A. Calini, Integrable evolutions of twisted polygons in centro-affine $\mathbb R^m$, arXiv: 1909.13435
[12] J. Benson, F. Valiquette, “Symmetry reduction of ordinary finite difference equations using moving frames”, J. Phys. A: Math. Theor., 50:19 (2017), 195201, 24 pp. | DOI | MR
[13] M. Toda, Theory of Nonlinear Lattice, Springer Series in Solid-State Sciences, 20, Springer, Berlin, 1989 | DOI | MR
[14] H. Flaschka, “The Toda lattice. II. Existence of integrals”, Phys. Rev. B, 9:4 (1974), 1924–1925 | DOI | MR
[15] H. Flaschka, “On the Toda lattice. II. Inverse-scattering solution”, Progr. Theor. Phys., 51:3 (1974), 703–716 | DOI | MR
[16] S. V. Manakov, “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67:2 (1974), 543–555 | MR
[17] M. Blaszak, K. Marciniak, “$R$-matrix approach to lattice integrable systems”, J. Math. Phys., 35:9 (1994), 4661–4682 | DOI | MR
[18] C. Li, “Solutions of bigraded Toda hierarchy”, J. Phys. A: Math. Theor., 44:25 (2011), 255201, 29 pp. | DOI | MR
[19] S. Carpentier, A. V. Mikhailov, J. P. Wang, “Rational recursion operators for integrable differential-difference equations”, Commun. Math. Phys., 370:3 (2019), 807–851 | DOI | MR
[20] S. Carpentier, A. V. Mikhailov, J. P. Wang, “PreHamiltonian and Hamiltonian operators for differential-difference equations”, Nonlinearity, 33:3 (2020), 915–941 | DOI | MR