Mots-clés : fractal interpolation
@article{TMF_2021_207_3_a0,
author = {V. Drakopoulos and N. Vijender},
title = {Univariable affine fractal interpolation functions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {333--346},
year = {2021},
volume = {207},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/}
}
V. Drakopoulos; N. Vijender. Univariable affine fractal interpolation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 333-346. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/
[1] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR
[2] M. F. Barnsley, “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR
[3] M. F. Barnsley, Fractals Everywhere, Dover, New York, 2012 | MR
[4] P. Maragos, “Fractal aspects of speech signals: dimension and interpolation”, Proceedings ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing (Toronto, ON, Canada, May 14–17, 1991), v. 1, IEEE Computer Society, Los Alamitos, CA, 1991, 417–420 | DOI
[5] A. K. B. Chand, G. P. Kapoor, “Generalized cubic spline fractal interpolation functions”, SIAM J. Numer. Anal., 44:2 (2006), 655–676 | DOI | MR
[6] P. Viswanathan, A. K. B. Chand, M. A. Navascués, “Fractal perturbation preserving fundamental shapes: bounds on the scale factors”, J. Math. Anal. Appl., 419:2 (2014), 804–817 | DOI | MR
[7] N. Vijender, “Bernstein fractal trigonometric approximation”, Acta Appl. Math., 159 (2018), 11–27 | DOI | MR
[8] S. Dillon, V. Drakopoulos, “On self-affine and self-similar graphs of fractal interpolation functions generated from iterated function systems”, Fractal Analysis: Applications in Health Sciences and Social Sciences, ed. F. Brambila, IntechOpen, Rijeka, 2017, 187–205 | DOI
[9] S. Ri, V. Drakopoulos, “How are fractal interpolation functions related to several contractions?”, Mathematical Theorems – Boundary Value Problems and Approximations, ed. L. Alexeyeva, IntechOpen, Rijeka, 2020 | DOI
[10] M. A. Navascués, M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants”, J. Comput. Anal. Appl., 9:3 (2007), 271–285 | MR
[11] N. Vijender, A. K. B. Chand, “Shape preserving affine fractal interpolation surfaces”, Nonlinear Stud., 21:2 (2014), 179–194 | MR
[12] M. Ali, T. G. Clarkson, “Using linear fractal interpolation functions to compress video images”, Fractals, 2:3 (1994), 417–421 | DOI
[13] M. F. Barnsley, “Fractal image compression”, Notices Amer. Math. Soc., 43:6 (1996), 657–662 | MR
[14] O. I. Craciunescu, S. K. Das, J. M. Poulson, T. V. Samulski, “Three-dimensional tumor perfusion reconstruction using fractal interpolation functions”, IEEE Trans. Biom. Eng., 48:4 (2001), 462–473 | DOI
[15] A. E. Jacquin, “Image coding based on a fractal theory of iterated contractive image transformations”, IEEE Trans. Image Processing, 1:1 (1992), 18–30 | DOI
[16] M. A. Navascués, M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants”, J. Comput. Anal. Appl., 9:3 (2007), 271–285 | MR