Univariable affine fractal interpolation functions
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 333-346 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An overview of affine fractal interpolation functions using a suitable iterated function system is presented. Furthermore, a brief and coarse discussion on the theory of affine fractal interpolation functions in 2D and their recent developments including some of the research done by the authors is provided. Moreover, the desired range of the contractivity factors of an affine fractal interpolation surface are identified such that it is monotonic and positive for the respective monotonic and positive surface data. All the shape-preserving fractal schemes developed here are verified by numerical experiments.
Keywords: attractor, dynamic system, iterated function system.
Mots-clés : fractal interpolation
@article{TMF_2021_207_3_a0,
     author = {V. Drakopoulos and N. Vijender},
     title = {Univariable affine fractal interpolation functions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {333--346},
     year = {2021},
     volume = {207},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/}
}
TY  - JOUR
AU  - V. Drakopoulos
AU  - N. Vijender
TI  - Univariable affine fractal interpolation functions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 333
EP  - 346
VL  - 207
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/
LA  - ru
ID  - TMF_2021_207_3_a0
ER  - 
%0 Journal Article
%A V. Drakopoulos
%A N. Vijender
%T Univariable affine fractal interpolation functions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 333-346
%V 207
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/
%G ru
%F TMF_2021_207_3_a0
V. Drakopoulos; N. Vijender. Univariable affine fractal interpolation functions. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 3, pp. 333-346. http://geodesic.mathdoc.fr/item/TMF_2021_207_3_a0/

[1] J. E. Hutchinson, “Fractals and self-similarity”, Indiana Univ. Math. J., 30:5 (1981), 713–747 | DOI | MR

[2] M. F. Barnsley, “Fractal functions and interpolation”, Constr. Approx., 2:4 (1986), 303–329 | DOI | MR

[3] M. F. Barnsley, Fractals Everywhere, Dover, New York, 2012 | MR

[4] P. Maragos, “Fractal aspects of speech signals: dimension and interpolation”, Proceedings ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing (Toronto, ON, Canada, May 14–17, 1991), v. 1, IEEE Computer Society, Los Alamitos, CA, 1991, 417–420 | DOI

[5] A. K. B. Chand, G. P. Kapoor, “Generalized cubic spline fractal interpolation functions”, SIAM J. Numer. Anal., 44:2 (2006), 655–676 | DOI | MR

[6] P. Viswanathan, A. K. B. Chand, M. A. Navascués, “Fractal perturbation preserving fundamental shapes: bounds on the scale factors”, J. Math. Anal. Appl., 419:2 (2014), 804–817 | DOI | MR

[7] N. Vijender, “Bernstein fractal trigonometric approximation”, Acta Appl. Math., 159 (2018), 11–27 | DOI | MR

[8] S. Dillon, V. Drakopoulos, “On self-affine and self-similar graphs of fractal interpolation functions generated from iterated function systems”, Fractal Analysis: Applications in Health Sciences and Social Sciences, ed. F. Brambila, IntechOpen, Rijeka, 2017, 187–205 | DOI

[9] S. Ri, V. Drakopoulos, “How are fractal interpolation functions related to several contractions?”, Mathematical Theorems – Boundary Value Problems and Approximations, ed. L. Alexeyeva, IntechOpen, Rijeka, 2020 | DOI

[10] M. A. Navascués, M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants”, J. Comput. Anal. Appl., 9:3 (2007), 271–285 | MR

[11] N. Vijender, A. K. B. Chand, “Shape preserving affine fractal interpolation surfaces”, Nonlinear Stud., 21:2 (2014), 179–194 | MR

[12] M. Ali, T. G. Clarkson, “Using linear fractal interpolation functions to compress video images”, Fractals, 2:3 (1994), 417–421 | DOI

[13] M. F. Barnsley, “Fractal image compression”, Notices Amer. Math. Soc., 43:6 (1996), 657–662 | MR

[14] O. I. Craciunescu, S. K. Das, J. M. Poulson, T. V. Samulski, “Three-dimensional tumor perfusion reconstruction using fractal interpolation functions”, IEEE Trans. Biom. Eng., 48:4 (2001), 462–473 | DOI

[15] A. E. Jacquin, “Image coding based on a fractal theory of iterated contractive image transformations”, IEEE Trans. Image Processing, 1:1 (1992), 18–30 | DOI

[16] M. A. Navascués, M. V. Sebastián, “Construction of affine fractal functions close to classical interpolants”, J. Comput. Anal. Appl., 9:3 (2007), 271–285 | MR