Group extensions, fiber bundles, and a parametric Yang–Baxter equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 310-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that any extension of an Abelian group corresponds to a solution of the parametric Yang–Baxter equation. This statement is a generalization of the well-known construction of a braided set in terms of group structure to the case of group extensions. We also show that this construction in the case of a semidirect product is a specialization of a more general construction using principal bundles and that the case of vector bundles considered earlier is an infinitesimal version of the case of a solution coming from the principal bundle structure.
Keywords: parametric Yang–Baxter equation, group extension, principal bundle, shelf.
@article{TMF_2021_207_2_a9,
     author = {M. M. Preobrazhenskaya and D. V. Talalaev},
     title = {Group extensions, fiber bundles, and a~parametric {Yang{\textendash}Baxter} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {310--318},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a9/}
}
TY  - JOUR
AU  - M. M. Preobrazhenskaya
AU  - D. V. Talalaev
TI  - Group extensions, fiber bundles, and a parametric Yang–Baxter equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 310
EP  - 318
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a9/
LA  - ru
ID  - TMF_2021_207_2_a9
ER  - 
%0 Journal Article
%A M. M. Preobrazhenskaya
%A D. V. Talalaev
%T Group extensions, fiber bundles, and a parametric Yang–Baxter equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 310-318
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a9/
%G ru
%F TMF_2021_207_2_a9
M. M. Preobrazhenskaya; D. V. Talalaev. Group extensions, fiber bundles, and a parametric Yang–Baxter equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 310-318. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a9/

[1] N. Reshetikhin, V. G. Turaev, “Invariants of $3$-manifolds via link polynomials and quantum groups”, Invent. Math., 103:1 (1991), 547–597 | DOI | MR

[2] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[3] J. Moser, A. P. Veselov, “Discrete versions of some classical integrable systems and factorization of matrix polynomials”, Commun. Math. Phys., 139:2 (1991), 217–243 | DOI | MR

[4] P. Deift, L. C. Li, C. Tomei, “Matrix factorizations and integrable systems”, Commun. Pure Appl. Math., 42:4 (1989), 443–521 | DOI | MR

[5] S. MacLane, “Categorical Algebra”, Bull. Amer. Math. Soc., 71 (1965), 40–106 | DOI | MR

[6] R. Fenn, M. Jordan-Santana, L. Kauffman, “Biquandles and virtual links”, Topology Appl., 145:1–3 (2004), 157–175 | DOI | MR

[7] W. Rump, “A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation”, Adv. Math., 193:1 (2005), 40–55 | DOI | MR

[8] W. Rump, “Braces, radical rings, and the quantum Yang–Baxter equation”, J. Algebra, 307:1 (2007), 153–170 | DOI | MR

[9] V. Lebed, L. Vendramin, “On structure groups of set-theoretic solutions to the Yang–Baxter equation”, Proc. Edinb. Math. Soc., 62:3 (2019), 683–717 | DOI | MR

[10] V. G. Drinfeld, “On some unsolved problems in quantum group theory”, Quantum Groups (Euler International Mathematical Institute, Leningrad, USSR, Fall 1990), Lecture Notes in Mathematics, 1510, ed. P. P. Kulish, Springer, Berlin, 1992, 1–8 | DOI | MR | Zbl

[11] J. S. Carter, M. Elhamdadi, M. Saito, “Homology theory for the set-theoretic Yang–Baxter equation and knot invariants from generalizations of quandles”, Fund. Math., 184 (2004), 31–54 | DOI | MR

[12] V. M. Buchstaber, S. A. Igonin, S. Konstantinou-Rizos, M. M. Preobrazhenskaia, “Yang–Baxter maps, Darboux transformations, and linear approximations of refactorisation problems”, J. Phys. A: Math. Theor., 53:50 (2020), 504002, 23 pp. | DOI | MR

[13] V. Lebed, “Cohomology of finite monogenic self-distributive structures”, J. Pure Appl. Algebra, 220:2 (2016), 711–734 | DOI | MR

[14] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, New York, 1982 | DOI | MR