Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 293-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the existence and asymptotic stability of a stationary solution of an initial boundary value problem for the reaction–diffusion–advection equation assuming that the reaction and advection terms are comparable in size and have a jump along a smooth curve located inside the studied domain. The problem solution has a large gradient in a neighborhood of this curve. We prove theorems on the existence, asymptotic uniqueness, and Lyapunov asymptotic stability for such solutions using the method of upper and lower solutions. To obtain the upper and lower solutions, we use the asymptotic method of differential inequalities that consists in constructing them as modified asymptotic approximations in a small parameter of solutions of these problems. We construct the asymptotic approximation of a solution using a modified Vasil'eva method.
Mots-clés : reaction–diffusion–advection equation
Keywords: discontinuous term, method of differential inequalities, upper solution, lower solution, inner transition layer, small parameter.
@article{TMF_2021_207_2_a8,
     author = {N. T. Levashova and N. N. Nefedov and O. A. Nikolaeva},
     title = {Solution with an inner transition layer of a~two-dimensional boundary value reaction{\textendash}diffusion{\textendash}advection problem with discontinuous reaction and advection terms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {293--309},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - N. N. Nefedov
AU  - O. A. Nikolaeva
TI  - Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 293
EP  - 309
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/
LA  - ru
ID  - TMF_2021_207_2_a8
ER  - 
%0 Journal Article
%A N. T. Levashova
%A N. N. Nefedov
%A O. A. Nikolaeva
%T Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 293-309
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/
%G ru
%F TMF_2021_207_2_a8
N. T. Levashova; N. N. Nefedov; O. A. Nikolaeva. Solution with an inner transition layer of a two-dimensional boundary value reaction–diffusion–advection problem with discontinuous reaction and advection terms. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 293-309. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/

[1] N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Asimptoticheski ustoichivye statsionarnye resheniya uravneniya reaktsiya-diffuziya-advektsiya s razryvnymi reaktivnym i advektivnym slagaemymi”, Differ. uravneniya, 56:5 (2020), 615–631 | DOI | DOI

[2] A. Sogachev, O. Panferov, “Modification of two-equation models to account for plant drag”, Boundary-Layer Meteorol., 121:2 (2006), 229–266 | DOI

[3] A. Olchev, K. Radler, A. Sogachev, O. Panferov, G. Gravenhorst, “Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature”, Ecological Modelling, 220:21 (2009), 3046–3056 | DOI

[4] O. V. Rudenko, “Neodnorodnoe uravnenie Byurgersa s modulnoi nelineinostyu: vozbuzhdenie i evolyutsiya intensivnykh voln”, Dokl. RAN, 474:6 (2017), 671–674 | DOI | DOI | Zbl

[5] O. V. Rudenko, S. N. Gurbatov, K. M. Khedberg, Nelineinaya akustika v zadachakh i primerakh, Fizmatlit, M., 2007

[6] A. I. Volpert, V. A. Volpert, Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, AMS, Providence, RI, 1994 | DOI | MR

[7] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy c obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[8] O. V. Rudenko, “Linearizuemoe uravnenie dlya voln v dissipativnykh sredakh s modulnoi, kvadratichnoi i kvadratichno-kubichnoi nelineinostyami”, Dokl. RAN, 471:1 (2016), 23–27 | DOI | DOI

[9] O. V. Rudenko, “Modulnye solitony”, Dokl. RAN, 471:6 (2016), 451–454 | DOI | DOI

[10] N. N. Nefedov, O. V. Rudenko, “O dvizhenii, usilenii i razrushenii frontov v uravneniyakh tipa Byurgersa s kvadratichnoi modulnoi nelineinostyu”, Dokl. RAN, 493:1 (2020), 26–31 | DOI | DOI

[11] N. Kopteva, M. Stynes, “Stabilised approximation of interior-layer solutions of a singularly perturbed semilinear reaction-diffusion problem”, Numer. Math., 119:4 (2011), 787–810 | DOI | MR

[12] E. O'Riordan, J. Quinn, “Numerical method for a nonlinear singularly perturbed interior layer problem”, BAIL 2010 – Boundary and Interior Layers, Computational and Asymptotic Methods, Lectures Notes in Computational Science and Engineering, 81, eds. C. Clavero, J. L. Gracia, F. J. Lisbona, Springer, Heidelberg, 2011, 187–195 | DOI | MR

[13] J. Quinn, “A numerical method for a nonlinear singularly perturbed interior layer problem using an approximate layer location”, J. Comput. Appl. Math., 290 (2015), 500–515 | DOI | MR

[14] D. V. Lukyanenko, M. A. Shishlenin, V. T. Volkov, “Solving of the coefficient inverse problems for a nonlinear singularly perturbed reaction-diffusion-advection equation with the final time data”, Commun. Nonlinear Sci. Numer. Simul., 54 (2018), 233–247 | DOI | MR

[15] S. I. Pokhozhaev, “Ob uravneniyakh vida $\Delta u=(x,u,Du)$”, Matem. sb., 113(155):2(10) (1980), 324–338 | DOI | MR | Zbl

[16] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR | Zbl

[17] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii parabolicheskogo tipa s razryvnymi nelineinostyami”, Differ. uravneniya, 38:4 (2002), 499–504 | DOI | MR

[18] C. De Coster, F. Obersnel, P. A. Omari, “A qualitative analysis via lower and upper solutions of first order periodic evolutionary equations with lack of uniqueness”, Handbook of Differential Equations: Ordinary Differential Equations, v. 3, eds. A. Cañada, R. Drábek, A. Fonda, B. V. Elsevier, North-Holland, Amsterdam, 2006, 203–339 | DOI | MR

[19] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differ. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl

[20] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Tr. MIAN, 268 (2010), 268–283 | DOI | MR | Zbl | Zbl

[21] N. Nefedov, “Comparison principle for reaction-diffusion-advection problems with boundary and internal layers”, Numerical Analysis and its Applications (Lozenetz, Bulgaria, June 15–20, 2012), Lecture Notes in Computer Science, 8236, eds. I. Dimov, I. Farago, L. Vulkov, Springer, Berlin, 2013, 62–72 | DOI | MR | Zbl

[22] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990

[23] E. A. Antipov, N. T. Levashova, N. N. Nefedov, “Asimptoticheskoe priblizhenie resheniya uravneniya reaktsiya-diffuziya-advektsiya s nelineinym advektivnym slagaemym”, Model. i analiz inform. sistem, 25:1 (2018), 18–32 | DOI

[24] N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, “Suschestvovanie i asimptoticheskaya ustoichivost statsionarnogo pogransloinogo resheniya dvumernoi zadachi reaktsiya-diffuziya-advektsiya”, Differ. uravneniya, 56:2 (2020), 204–216 | DOI | DOI

[25] N. T. Levashova, N. N. Nefedov, O. A. Nikolaeva, A. O. Orlov, A. A. Panin, “The solution with internal transition layer of the reaction-diffusion equation in case of discontinuous reactive and diffusive terms”, Math. Methods Appl. Sci., 41:18 (2018), 9203–9217 | DOI | MR

[26] N. N. Nefedov, E. I. Nikulin, “Cuschestvovanie i ustoichivost periodicheskikh kontrastnykh struktur v zadache reaktsiya-advektsiya-diffuziya v sluchae sbalansirovannoi nelineinosti”, Differ. uravneniya, 53:4 (2017), 524–537 | DOI | DOI

[27] N. N. Nefedov, E. I. Nikulin, L. Recke, “On the existence and asymptotic stability of periodic contrast structures in quasilinear reaction-advection-diffusion equations”, Russ. J. Math. Phys., 26:1 (2019), 55–69 | DOI | MR

[28] N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Asimptoticheskaya ustoichivost statsionarnogo resheniya mnogomernogo uravneniya reaktsiya-diffuziya s razryvnym istochnikom”, Zhurn. vychisl. matem. i matem. fiz., 59:4 (2019), 611–620 | DOI | DOI

[29] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | DOI | MR