Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms
    
    
  
  
  
      
      
      
        
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 293-309
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We study the problem of the existence and asymptotic stability of a stationary solution of an initial boundary value problem for the reaction–diffusion–advection equation assuming that the reaction and advection terms are comparable in size and have a jump along a smooth curve located inside the studied domain. The problem solution has a large gradient in a neighborhood of this curve. We prove theorems on the existence, asymptotic uniqueness, and Lyapunov asymptotic stability for such solutions using the method of upper and lower solutions. To obtain the upper and lower solutions, we use the asymptotic method of differential inequalities that consists in constructing them as modified asymptotic approximations in a small parameter of solutions of these problems. We construct the asymptotic approximation of a solution using a modified Vasil'eva method.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
reaction–diffusion–advection equation
Keywords: discontinuous term, method of differential inequalities, upper solution, lower solution, inner transition layer, small parameter.
                    
                  
                
                
                Keywords: discontinuous term, method of differential inequalities, upper solution, lower solution, inner transition layer, small parameter.
@article{TMF_2021_207_2_a8,
     author = {N. T. Levashova and N. N. Nefedov and O. A. Nikolaeva},
     title = {Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {293--309},
     publisher = {mathdoc},
     volume = {207},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/}
}
                      
                      
                    TY - JOUR AU - N. T. Levashova AU - N. N. Nefedov AU - O. A. Nikolaeva TI - Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 293 EP - 309 VL - 207 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/ LA - ru ID - TMF_2021_207_2_a8 ER -
%0 Journal Article %A N. T. Levashova %A N. N. Nefedov %A O. A. Nikolaeva %T Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 293-309 %V 207 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/ %G ru %F TMF_2021_207_2_a8
N. T. Levashova; N. N. Nefedov; O. A. Nikolaeva. Solution with an inner transition layer of a~two-dimensional boundary value reaction--diffusion--advection problem with discontinuous reaction and advection terms. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 293-309. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a8/