Determinants in quantum matrix algebras and integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 261-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define quantum determinants in quantum matrix algebras related to pairs of compatible braidings. We establish relations between these determinants and the so-called column and row determinants, which are often used in the theory of integrable systems. We also generalize the quantum integrable spin systems using generalized Yangians related to pairs of compatible braidings. We demonstrate that such quantum integrable spin systems are not uniquely determined by the “quantum coordinate ring” of the basic space $V$. For example, the “quantum plane” $xy=qyx$ yields two different integrable systems: rational and trigonometric.
Keywords: compatible braiding, quantum matrix algebra, half-quantum algebra, generalized Yangian, quantum symmetric polynomial, quantum determinant.
@article{TMF_2021_207_2_a6,
     author = {D. I. Gurevich and P. A. Saponov},
     title = {Determinants in quantum matrix algebras and integrable systems},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {261--276},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/}
}
TY  - JOUR
AU  - D. I. Gurevich
AU  - P. A. Saponov
TI  - Determinants in quantum matrix algebras and integrable systems
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 261
EP  - 276
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/
LA  - ru
ID  - TMF_2021_207_2_a6
ER  - 
%0 Journal Article
%A D. I. Gurevich
%A P. A. Saponov
%T Determinants in quantum matrix algebras and integrable systems
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 261-276
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/
%G ru
%F TMF_2021_207_2_a6
D. I. Gurevich; P. A. Saponov. Determinants in quantum matrix algebras and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/

[1] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin, New York, 1982, 61–119 | DOI | MR | Zbl

[2] D. I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl

[3] A. Isaev, O. Ogievetsky, P. Pyatov, “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A: Math. Gen., 32:9 (1999), L115–L121 | DOI | MR | Zbl

[4] A. Isaev, O. Ogievetsky, “Half-quantum linear algebra”, Symmetries and Groups in Contemporary Physics (Tianjin, China, 20–26 August, 2012), Nankai Series in Pure, Applied Mathematics and Theoretical Physics, 11, eds. C. Bai, J.-P. Gazeau, M.-L. Ge, World Sci., Singapore, 2013, 479–486 | DOI

[5] D. Gurevich, P. Saponov, “Braided Yangians”, J. Geom. Phys., 138 (2019), 124–143 | DOI | MR

[6] D. Gurevich, P. Saponov, “From reflection equation algebra to braided yangians”, Recent Developements in Integrable Systems and Related Topics of Mathematical Physics (Kezenoi-Am, Russia, 2016), Springer Proceedings in Mathematics and Statistics, 273, eds. V. M. Buchstaber, S. Konstantinou-Rizos, A. V. Mikhailov, Springer, Cham, 2018, 3–23 | DOI

[7] A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev, “Algebraic properties of Manin matrices II: $q$-analogues and integrable systems”, Adv. Appl. Math., 60 (2014), 25–89 | DOI | MR

[8] A. Gyoja, “A $q$-analogue of Young symmetrizers”, Osaka J. Math., 23:4 (1986), 841–852 | MR

[9] A. Isaev, O. Ogievetsky, P. Pyatov, “$q$-Multilinear algebra”, Lie Theory and its Applications in Physics III (Clausthal, Germany, 11–14 July, 1999), eds. H.-D. Doebner, V. K. Dobrev, J. Hilgert, World Sci., Singapore, 2000, 268–279 | DOI | MR

[10] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[11] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Teoriya predstavlenii algebry (modifitsirovannogo) uravneniya otrazhenii $GL(m|n)$ tipa”, Algebra i analiz, 20:2 (2008), 70–133 | DOI | MR | Zbl

[12] V. V. Lyubashenko, “Algebry Khopfa i vektor-simmetrii”, UMN, 41:5(251) (1986), 185–186 | DOI | MR | Zbl

[13] V. V. Lyubashenko, Superanaliz i reshenie uravnenii treugolnikov, Dis. ...kand. fiz.-matem. nauk, In-t matematiki AN USSR, Kiev, 1986

[14] A. P. Isaev, “$R$-matrichnyi podkhod k differentsialnomu ischisleniyu na kvantovykh gruppakh”, EChAYa, 28:3 (1997), 685–752; A. P. Isaev, Quantum groups and Yang–Baxter equations, preprint MPI-04 132, Max-Plank-Institut für Matematik, Bonn, Germany, 2004 http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf

[15] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Hecke symmetries and characteristic relations on reflection equation algebras”, Lett. Math. Phys., 41:3 (1997), 255–264 | DOI | MR

[16] A. Chervov, G. Falqui, V. Rubtsov, “Algebraic properties of Manin matrices. I”, Adv. Appl. Math., 43:3 (2009), 239–315 | DOI | MR

[17] Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Springer, Cham, 2018 | DOI | MR

[18] M. Jimbo, “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR

[19] V. Jones, “Baxterization”, Internat. J. Modern Phys. A, 6:12 (1991), 2035–2043 | DOI | MR

[20] D. Gurevich, P. Saponov, A. Slinkin, “Bethe subalgebras in braided Yangians and Gaudin-type models”, Commun. Math. Physics, 374 (2020), 689–704 | DOI | MR