@article{TMF_2021_207_2_a6,
author = {D. I. Gurevich and P. A. Saponov},
title = {Determinants in quantum matrix algebras and integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--276},
year = {2021},
volume = {207},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/}
}
D. I. Gurevich; P. A. Saponov. Determinants in quantum matrix algebras and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/
[1] P. P. Kulish, E. K. Sklyanin, “Quantum spectral transform method. Recent developments”, Integrable Quantum Field Theories, Lecture Notes in Physics, 151, eds. J. Hietarinta, C. Montonen, Springer, Berlin, New York, 1982, 61–119 | DOI | MR | Zbl
[2] D. I. Gurevich, “Algebraicheskie aspekty kvantovogo uravneniya Yanga–Bakstera”, Algebra i analiz, 2:4 (1990), 119–148 | MR | Zbl
[3] A. Isaev, O. Ogievetsky, P. Pyatov, “On quantum matrix algebras satisfying the Cayley–Hamilton–Newton identities”, J. Phys. A: Math. Gen., 32:9 (1999), L115–L121 | DOI | MR | Zbl
[4] A. Isaev, O. Ogievetsky, “Half-quantum linear algebra”, Symmetries and Groups in Contemporary Physics (Tianjin, China, 20–26 August, 2012), Nankai Series in Pure, Applied Mathematics and Theoretical Physics, 11, eds. C. Bai, J.-P. Gazeau, M.-L. Ge, World Sci., Singapore, 2013, 479–486 | DOI
[5] D. Gurevich, P. Saponov, “Braided Yangians”, J. Geom. Phys., 138 (2019), 124–143 | DOI | MR
[6] D. Gurevich, P. Saponov, “From reflection equation algebra to braided yangians”, Recent Developements in Integrable Systems and Related Topics of Mathematical Physics (Kezenoi-Am, Russia, 2016), Springer Proceedings in Mathematics and Statistics, 273, eds. V. M. Buchstaber, S. Konstantinou-Rizos, A. V. Mikhailov, Springer, Cham, 2018, 3–23 | DOI
[7] A. Chervov, G. Falqui, V. Rubtsov, A. Silantyev, “Algebraic properties of Manin matrices II: $q$-analogues and integrable systems”, Adv. Appl. Math., 60 (2014), 25–89 | DOI | MR
[8] A. Gyoja, “A $q$-analogue of Young symmetrizers”, Osaka J. Math., 23:4 (1986), 841–852 | MR
[9] A. Isaev, O. Ogievetsky, P. Pyatov, “$q$-Multilinear algebra”, Lie Theory and its Applications in Physics III (Clausthal, Germany, 11–14 July, 1999), eds. H.-D. Doebner, V. K. Dobrev, J. Hilgert, World Sci., Singapore, 2000, 268–279 | DOI | MR
[10] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl
[11] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Teoriya predstavlenii algebry (modifitsirovannogo) uravneniya otrazhenii $GL(m|n)$ tipa”, Algebra i analiz, 20:2 (2008), 70–133 | DOI | MR | Zbl
[12] V. V. Lyubashenko, “Algebry Khopfa i vektor-simmetrii”, UMN, 41:5(251) (1986), 185–186 | DOI | MR | Zbl
[13] V. V. Lyubashenko, Superanaliz i reshenie uravnenii treugolnikov, Dis. ...kand. fiz.-matem. nauk, In-t matematiki AN USSR, Kiev, 1986
[14] A. P. Isaev, “$R$-matrichnyi podkhod k differentsialnomu ischisleniyu na kvantovykh gruppakh”, EChAYa, 28:3 (1997), 685–752; A. P. Isaev, Quantum groups and Yang–Baxter equations, preprint MPI-04 132, Max-Plank-Institut für Matematik, Bonn, Germany, 2004 http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf
[15] D. I. Gurevich, P. N. Pyatov, P. A. Saponov, “Hecke symmetries and characteristic relations on reflection equation algebras”, Lett. Math. Phys., 41:3 (1997), 255–264 | DOI | MR
[16] A. Chervov, G. Falqui, V. Rubtsov, “Algebraic properties of Manin matrices. I”, Adv. Appl. Math., 43:3 (2009), 239–315 | DOI | MR
[17] Yu. I. Manin, Quantum Groups and Noncommutative Geometry, Springer, Cham, 2018 | DOI | MR
[18] M. Jimbo, “A $q$-difference analogue of $U(\mathfrak{g})$ and the Yang–Baxter equation”, Lett. Math. Phys., 10:1 (1985), 63–69 | DOI | MR
[19] V. Jones, “Baxterization”, Internat. J. Modern Phys. A, 6:12 (1991), 2035–2043 | DOI | MR
[20] D. Gurevich, P. Saponov, A. Slinkin, “Bethe subalgebras in braided Yangians and Gaudin-type models”, Commun. Math. Physics, 374 (2020), 689–704 | DOI | MR