Determinants in quantum matrix algebras and integrable systems
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 261-276
Voir la notice de l'article provenant de la source Math-Net.Ru
We define quantum determinants in quantum matrix algebras related to pairs of compatible braidings. We establish relations between these determinants and the so-called column and row determinants, which are often used in the theory of integrable systems. We also generalize the quantum integrable spin systems using generalized Yangians related to pairs of compatible braidings. We demonstrate that such quantum integrable spin systems are not uniquely determined by the “quantum coordinate ring” of the basic space $V$. For example, the “quantum plane” $xy=qyx$ yields two different integrable systems: rational and trigonometric.
Keywords:
compatible braiding, quantum matrix algebra, half-quantum algebra,
generalized Yangian, quantum symmetric polynomial, quantum determinant.
@article{TMF_2021_207_2_a6,
author = {D. I. Gurevich and P. A. Saponov},
title = {Determinants in quantum matrix algebras and integrable systems},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--276},
publisher = {mathdoc},
volume = {207},
number = {2},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/}
}
TY - JOUR AU - D. I. Gurevich AU - P. A. Saponov TI - Determinants in quantum matrix algebras and integrable systems JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 261 EP - 276 VL - 207 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/ LA - ru ID - TMF_2021_207_2_a6 ER -
D. I. Gurevich; P. A. Saponov. Determinants in quantum matrix algebras and integrable systems. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 261-276. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a6/