Tutte polynomials of vertex-weighted graphs and group cohomology
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 226-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a generalization of the Tutte polynomial for vertex-weighted graphs for which the coefficients of the “deletion–contraction” relation depend nontrivially on the vertex weights. We show that the corresponding relation on the coefficients coincides with the two-cocycle relation in the group cohomology. We obtain a representation of a new invariant by summing over subgraphs and establish its connection with four-invariants of graphs.
Mots-clés : Tutte polynomial
Keywords: group cohomology.
@article{TMF_2021_207_2_a4,
     author = {B. S. Bychkov and A. A. Kazakov and D. V. Talalaev},
     title = {Tutte polynomials of vertex-weighted graphs and group cohomology},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {226--236},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a4/}
}
TY  - JOUR
AU  - B. S. Bychkov
AU  - A. A. Kazakov
AU  - D. V. Talalaev
TI  - Tutte polynomials of vertex-weighted graphs and group cohomology
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 226
EP  - 236
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a4/
LA  - ru
ID  - TMF_2021_207_2_a4
ER  - 
%0 Journal Article
%A B. S. Bychkov
%A A. A. Kazakov
%A D. V. Talalaev
%T Tutte polynomials of vertex-weighted graphs and group cohomology
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 226-236
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a4/
%G ru
%F TMF_2021_207_2_a4
B. S. Bychkov; A. A. Kazakov; D. V. Talalaev. Tutte polynomials of vertex-weighted graphs and group cohomology. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 226-236. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a4/

[1] J. A. Ellis-Monaghan, C. Merino, “Graph polynomials and their applications I: The Tutte polynomial”, Structural Analysis of Complex Networks, ed. M. Dehmer, Birkhäuser, Boston, 2011, 219–255 | DOI | MR | Zbl

[2] T. Zaslavsky, “Strong Tutte functions of matroids and graphs”, Trans. Amer. Math. Soc., 334:1 (1992), 317–347 | DOI | MR

[3] M. Kochol, “Modifications of Tutte–Grothendieck invariants and Tutte polynomials”, AKCE Internat. J. Graphs Comb., 17:1 (2020), 70–73 | DOI | MR

[4] A. D. Sokal, “The multivariate Tutte polynomial (alias Potts model) for graphs and matroids”, Surveys in Combinatorics 2005, ed. B. S. Webb, Cambridge Univ. Press, Cambridge, 2005, 173–226 | DOI | MR

[5] B. Bychkov, A. Kazakov, D. Talalaev, Multivariate polynomial graph invariants: dualities and critical properties, arXiv: 2005.10288v2

[6] L. Beaudin, J. Ellis-Monaghan, G. Pangborn, R. Shrock, “A little statistical mechanics for the graph theorist”, Discrete Math., 310:13–14 (2010), 2037–2053 | DOI | MR

[7] S. C. Chang, R. Shrock, “Zeros of Jones polynomials for families of knots and links”, Phys. A, 301:1–4 (2001), 196–218 | DOI | MR

[8] F. Y. Wu, “The Potts model”, Rev. Modern Phys., 54:1 (1982), 235–268 | DOI | MR

[9] V. Gorbounov, D. Talalaev, “Electrical varieties as vertex integrable statistical models”, J. Phys. A: Math. Theor., 53:45 (2020), 454001, 28 pp. | DOI | MR

[10] A. Berenstein, S. Fomin, A. Zelevinsky, “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122:1 (1996), 49–149 | DOI | MR

[11] A. Berenstein, A. Zelevinsky, “Quantum cluster algebras”, Adv. Math., 195:2 (2005), 405–455 | DOI | MR

[12] P. Galashin, P. Pylyavskyy, “Ising model and the positive orthogonal Grassmannian”, Duke Math. J., 169:10 (2020), 1877–1942 | DOI | MR

[13] M. Khovanov, “A categorification of the Jones polynomial”, Duke Math. J., 101:3 (2000), 359–426 | MR

[14] L. Helme-Guizon, Y. Rong, “A categorification for the chromatic polynomial”, Algebr. Geom. Topol., 5 (2005), 1365–1388 | DOI | MR | Zbl

[15] D. Bar-Natan, “On Khovanov's categorification of the Jones polynomial”, Algebr. Geom. Topol., 2 (2002), 337–370, arXiv: math.QA/0201043 | DOI | MR

[16] T. Krajewski, I. Moffatt, A. Tanasa, “Hopf algebras and Tutte polynomials”, Adv. Appl. Math., 95 (2018), 271–330 | DOI | MR

[17] I. Averbouch, B. Godlin, J. A. Makowsky, “A most general edge elimination polynomial”, Graph-Theoretic Concepts in Computer Science (Durham, UK, June 30 – July 2, 2008), Lecture Notes in Computer Science, 5344, eds. H. Broersma, T. Erlebach, T. Friedetzky, D. Paulusma, Springer, Berlin–Heidelberg, 2008, 31–42 | DOI | MR

[18] R. P. Stanley, “A symmetric function generalization of the chromatic polynomial of a graph”, Adv. Math., 111:1 (1995), 166–194 | DOI | MR

[19] S. D. Noble, D. J. A. Welsh, “A weighted graph polynomial from chromatic invariants of knots”, Ann. Inst. Fourier (Grenoble), 49:3 (1999), 1057–1087 | DOI | MR

[20] S. Chmutov, S. Duzhin, S. Lando, “Vassiliev knot invariants. III. Forest algebra and weighted graphs”, Singularities and Bifurcations, Advances in Soviet Mathematics, 21, ed. V. I. Arnold, AMS, Providence, RI, 1994, 135–145 | MR | Zbl

[21] S. Chmutov, M. Kazarian, S. Lando, “Polynomial graph invariants and the KP hierarchy”, Selecta Math. (N. S.), 26:3 (2020), 34, 22 pp. | DOI | MR

[22] B. S. Bychkov, A. V. Mikhailov, “Polinomialnye invarianty grafov i ierarkhii lineinykh uravnenii”, UMN, 74:2(446) (2019), 189–190 | DOI | DOI | MR

[23] J. A. Ellis-Monaghan, I. Moffatt, “The Tutte–Potts connection in the presence of an external magnetic field”, Adv. Appl. Math., 47:4 (2011), 772–782 | DOI | MR

[24] M. Stykow, Introduction to Group Cohomology, Thesis for the degree of Bachelor of Science (Honours), Department of Mathematical Sciences, Monash University, Australia, 2008

[25] J. S. Carter, D. Jelsovsky, S. Kamada, L. Langford, M. Saito, “Quandle cohomology and state-sum invariants of knotted curves and surfaces”, Trans. Amer. Math. Soc., 355:10 (2003), 3947–3989 | DOI | MR

[26] V. Ruiz Herrero, Extensions of Groups, Thesis for the degree of Bachelor of Science, Universitat Politècnica de Catalunya, Barcelona, Spain, 2018

[27] S. K. Lando, A. K. Zvonkin, Graphs on Surfaces and their Applications, Encyclopaedia of Mathematical Sciences, 141, Springer, Berlin, 2013 | DOI | MR