Singularly perturbed partially dissipative systems of equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 210-225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an asymptotic expansion in a small parameter of a boundary layer solution of the boundary value problem for a system of two ordinary differential equations, one of which is a second-order equation and the other is a first-order equation with a small parameter at the derivatives in both equations. Such a system arises in chemical kinetics when modeling the stationary process in the case of fast reactions and in the absence of diffusion of one of the reacting substances. A significant feature of the studied problem is that one of the equations of the degenerate system has a triple root. This leads to a qualitative difference in the boundary layer component of the solution compared with the case of simple (single) roots of degenerate equations. The boundary layer becomes multizonal, and the standard algorithm for constructing the boundary layer series turns out to be unsuitable and is replaced with a new algorithm.
Keywords: singularly perturbed boundary value problem with a triple root of the degenerate equation, partially dissipative system, multizone boundary layer.
@article{TMF_2021_207_2_a3,
     author = {V. F. Butuzov},
     title = {Singularly perturbed partially dissipative systems of equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {210--225},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a3/}
}
TY  - JOUR
AU  - V. F. Butuzov
TI  - Singularly perturbed partially dissipative systems of equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 210
EP  - 225
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a3/
LA  - ru
ID  - TMF_2021_207_2_a3
ER  - 
%0 Journal Article
%A V. F. Butuzov
%T Singularly perturbed partially dissipative systems of equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 210-225
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a3/
%G ru
%F TMF_2021_207_2_a3
V. F. Butuzov. Singularly perturbed partially dissipative systems of equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 210-225. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a3/

[1] S. L. Hollis, J. J. Morgan, “Partly dissipative reaction-diffusion systems and a model of phosphorus diffusion in silicon”, Nonlinear Anal., 19:5 (1992), 427–440 | DOI | MR

[2] M. Marion, “Inertial manifolds associated to partly dissipative reaction-diffusion systems”, J. Math. Anal. Appl., 143:2 (1989), 295–326 | DOI | MR

[3] M. Marion, “Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems”, SIAM J. Math. Anal., 20:4 (1989), 816–844 | DOI | MR

[4] P. Fabrie, C. Galusinski, “Exponential attractors for a partially dissipative reaction system”, Asymptotic Anal., 12:4 (1996), 329–354 | DOI | MR

[5] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed partly dissipative reaction-diffusion systems in case of exchange of stabilities”, J. Math. Anal. Appl., 273:1 (2002), 217–235 | DOI | MR

[6] V. F. Butuzov, “Asimptotika i ustoichivost statsionarnogo pogransloinogo resheniya chastichno dissipativnoi sistemy uravnenii”, Zhurn. vychisl. matem. i matem. fiz., 59:7 (2019), 1201–1229 | MR

[7] V. F. Butuzov, “Asimptotika resheniya chastichno dissipativnoi sistemy uravnenii s mnogozonnym pogranichnym sloem”, Zhurn. vychisl. matem. i matem. fiz., 59:10 (2019), 1731–1751 | MR

[8] V. F. Butuzov, “Asimptotika pogransloinogo resheniya statsionarnoi chastichno dissipativnoi sistemy s kratnym kornem vyrozhdennogo uravneniya”, Matem. sb., 210:11 (2019), 76–102 | DOI | DOI

[9] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990

[10] V. F. Butuzov, “Ob osobennostyakh pogranichnogo sloya v singulyarno vozmuschennykh zadachakh s kratnym kornem vyrozhdennogo uravneniya”, Matem. zametki, 94:1 (2013), 68–80 | DOI | DOI | MR | Zbl

[11] V. F. Butuzov, A. I. Bychkov, “Asimptotika resheniya nachalno-kraevoi zadachi dlya singulyarno vozmuschennogo parabolicheskogo uravneniya v sluchae trekhkratnogo kornya vyrozhdennogo uravneniya”, Zhurn. vychisl. matem. i matem. fiz., 56:4 (2016), 605–624 | DOI | DOI | MR

[12] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 719–722 | MR

[13] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh klassov nelineinykh singulyarno vozmuschennykh zadach s vnutrennimi sloyami”, Differents. uravneniya, 31:7 (1995), 1142–1149 | MR | Zbl

[14] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | DOI | MR | Zbl | Zbl