Complicated behavior in cubic Hénon maps
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 202-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a generalized Hénon map in two-dimensional space. We find a region of the phase space where the nonwandering set exists, specify parameter values for which this nonwandering set is hyperbolic, and prove that our map when restricted to a specific invariant subset is topologically conjugate to the Bernoulli three-shift. Coupling two such maps, as a result, we obtain a map in four-dimensional space and show that Bernoulli shifts also exist in this map.
Mots-clés : cubic Hénon map
Keywords: Bernoulli shift, hyperbolic dynamics.
@article{TMF_2021_207_2_a2,
     author = {S. Anastassiou},
     title = {Complicated behavior in cubic {H\'enon} maps},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {202--209},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a2/}
}
TY  - JOUR
AU  - S. Anastassiou
TI  - Complicated behavior in cubic Hénon maps
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 202
EP  - 209
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a2/
LA  - ru
ID  - TMF_2021_207_2_a2
ER  - 
%0 Journal Article
%A S. Anastassiou
%T Complicated behavior in cubic Hénon maps
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 202-209
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a2/
%G ru
%F TMF_2021_207_2_a2
S. Anastassiou. Complicated behavior in cubic Hénon maps. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 202-209. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a2/

[1] M. Hénon, “A two-dimensional mapping with a strange attractor”, Commun. Math. Phys., 50:1 (1976), 69–77 | DOI | MR

[2] R. Devaney, Z. Nitecki, “Shift automorphisms in the Hénon mapping”, Commun. Math. Phys., 67:2 (1979), 137–146 | DOI | MR

[3] V. Franceschini, L. Russo, “Stable and unstable manifolds of the Hénon mapping”, J. Stat. Phys., 25:4 (1981), 757–769 | DOI | MR

[4] D. Sterling, H. R. Dullin, J. D. Meiss, “Homoclinic bifurcations for the Hénon map”, Phys. D, 134:2 (1999), 153–184 | DOI | MR

[5] H. E. Lomeli, J. D. Meiss, “Quadratic volume-preserving maps”, Nonlinearity, 11:3 (1998), 557–574 | DOI | MR

[6] S. V. Gonchenko, J. D. Meiss, I. I. Ovsyannikov, “Chaotic dynamics of three-dimensional Hénon maps that originate from a homoclinic bifurcation”, Regul. Chaotic Dyn., 11:2 (2006), 191–212 | DOI | MR | Zbl

[7] Sh. Friedland, J. Milnor, “Dynamical properties of plane polynomial automorphisms”, Ergodic Theory Dynam. Systems, 9:1 (1989), 67–99 | DOI | MR

[8] H. R. Dullin, J. D. Meiss, “Generalized Hénon maps: the cubic diffeomorphisms of the plane. Bifurcations, patterns and symmetry”, Phys. D, 143:1–4 (2000), 262–289 | DOI | MR

[9] V. S. Gonchenko, Yu. A. Kuznetsov, H. G. E. Meijer, “Generalized Hénon map and bifurcations of homoclinic tangencies”, SIAM J. Appl. Dyn. Syst., 4:2 (2005), 407–436 | DOI | MR

[10] X. Zhang, “Hyperbolic invariant sets of the real generalized Hénon maps”, Chaos, Solitons Fractals, 43:1–12 (2010), 31–41 | DOI | MR

[11] S. Anastassiou, T. Bountis, A. Bäcker, “Homoclinic points of 2D and 4D maps via the parametrization method”, Nonlinearity, 30:10 (2017), 3799–3820 | DOI | MR

[12] S. Anastassiou, T. Bountis, A. Bäcker, “Recent results on the dynamics of higher-dimensional Hénon maps”, Regul. Chaotic Dyn., 23:2 (2018), 161–177 | DOI | MR

[13] V. S. Afraimovich, V. V. Bykov, L. P. Shilnikov, “O prityagivayuschikh negrubykh predelnykh mnozhestvakh tipa attraktora Lorentsa”, Tr. MMO, 44:2 (1982), 150–212 | MR | Zbl

[14] S. Aubry, “Anti-integrability in dynamical and variational problems”, Phys. D, 86:1–2 (1995), 284–296 | DOI | MR

[15] Y.-C. Chen, “Anti-integrability in scattering billiards”, Dyn. Syst., 19:2 (2004), 145–159 | DOI | MR

[16] S. V. Bolotin, R. MacKay, “Multibump orbits near the anti-integrable limit for Lagrangian systems”, Nonlinearity, 10:5 (1997), 1015–1029 | DOI | MR

[17] C. Baesens, Y.-C. Chen, R. S. MacKay, “Abrupt bifurcations in chaotic scattering: view from the anti-integrable limit”, Nonlinearity, 26:9 (2013), 2703–2730 | DOI | MR

[18] M.-C. Li, M. Malkin, “Bounded nonwandering sets for polynomial mappings”, J. Dynam. Control Systems, 10:3 (2004), 377–389 | DOI | MR

[19] J. Banks, J. Brooks, G. Cairns, G. Davis, P. Stacey, “On Devaney's definition of chaos”, Amer. Math. Monthly, 99:4 (1992), 332–334 | DOI | MR