Mots-clés : phase portrait, bifurcation.
@article{TMF_2021_207_2_a10,
author = {A. V. Sakharov},
title = {Dynamics of a~point in the~axisymmetric gravitational potential of a~massive fixed ring and center},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {319--330},
year = {2021},
volume = {207},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/}
}
TY - JOUR AU - A. V. Sakharov TI - Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 319 EP - 330 VL - 207 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/ LA - ru ID - TMF_2021_207_2_a10 ER -
A. V. Sakharov. Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 319-330. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/
[1] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl
[2] S. A. Kutuzov, “Orbits in ‘Disk + Halo’ galaxy model”, Order and Chaos in Stellar and Planetary Systems (Saint Petersburg, Russia, 17–24 August, 2003), Astronomical Society of the Pacific Conference Series, 316, eds. G. G. Byrd, K. V. Kholshevnikov, A. A. Myllri, I. I. Nikiforov, V. V. Orlov, ASP, San Francisco, 2004, 37–42
[3] E. Tresaco, A. Elipe, A. Riaguas, “Dynamics of a particle under the gravitational potential of a massive annulus: properties and equilibrium description”, Celestial Mech. Dynam. Astronom., 111:4 (2011), 431–447 | DOI | MR
[4] E. Tresaco, A. Elipe, A. Riaguas, “Computation of families of periodic orbits and bifurcations around a massive annulus”, Astrophys. Space Sci., 338:1 (2012), 23–33 | DOI
[5] E. Tresaco, A. Riaguas, A. Elipe, “Numerical analysis of periodic solutions and bifurcations in the planetary annulus problem”, Appl. Math. Comput., 225:1 (2013), 645–655 | DOI | MR
[6] A. Alberti, C. Vidal, “Dynamics of a particle in a gravitational field of a homogeneous annulus disk”, Celestial Mech. Dynam. Astronom., 98:2 (2007), 75–93 | DOI | MR
[7] T. Fukushima, “Precise computation of acceleration due to uniform ring or disk”, Celestial Mech. Dynam. Astronom., 108:4 (2010), 339–356 | DOI | MR
[8] A. Alberti, C. Vidal, “Singularities and dynamics aspects of a particle in a gravitational field of a central punctual body surrounded by a solid circular ring”, SIAM J. Appl. Dyn. Syst., 18:1 (2019), 1–32 | DOI | MR
[9] A. Alberti, C. Vidal, “Singularities in the gravitational attraction problem due to massive bodies”, Discrete Contin. Dyn. Syst., 26:3 (2009), 805–822 | DOI | MR
[10] A. V. Sakharov, “Some trajectories of a point in the potential of a fixed ring and center”, Nelineinaya dinam., 15:4 (2019), 587–592 | MR
[11] N.-E. Najid, M. Zegoumou, E. El Haj, “Dynamical behavior in the vicinity of a circular anisotropic ring”, Open Astr. J., 5 (2012), 54–60 | DOI
[12] G. N. Duboshin, Teoriya prityazheniya, Fizmatgiz, M., 1961
[13] H. Lass, L. Blitzer, “The gravitational potential due to uniform disks and rings”, Celest. Mech., 30:3 (1983), 225–228 | DOI | MR
[14] R. A. Broucke, A. Elipe, “The dynamics of orbits in a potential field of a solid circular ring”, Regul. Chaotic Dyn., 10:2 (2005), 129–143 | DOI | MR
[15] V. V. Sidorenko, “Dynamics of ‘jumping’ Trojans: a perturbative treatment”, Celestial Mech. Dynam. Astronom., 130:10 (2018), 67, 18 pp. | DOI | MR