Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 319-330 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of three-dimensional motion of a passively gravitating point in the potential created by a homogeneous thin fixed ring and a massive point located in the center of the ring. The motion of a passively gravitating point admits two first integrals. We first consider the integrable case of an invariant motion in the equatorial plane and then consider the general case of three-dimensional motion, where we classify the possible trajectories of a point depending on the values of the first integrals. Finally, some previous results for similar problems are compared.
Keywords: celestial mechanics, axisymmetric potential, gravitational potential, ring, first integral
Mots-clés : phase portrait, bifurcation.
@article{TMF_2021_207_2_a10,
     author = {A. V. Sakharov},
     title = {Dynamics of a~point in the~axisymmetric gravitational potential of a~massive fixed ring and center},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {319--330},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/}
}
TY  - JOUR
AU  - A. V. Sakharov
TI  - Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 319
EP  - 330
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/
LA  - ru
ID  - TMF_2021_207_2_a10
ER  - 
%0 Journal Article
%A A. V. Sakharov
%T Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 319-330
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/
%G ru
%F TMF_2021_207_2_a10
A. V. Sakharov. Dynamics of a point in the axisymmetric gravitational potential of a massive fixed ring and center. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 319-330. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a10/

[1] J. Binney, S. Tremaine, Galactic Dynamics, Princeton Univ. Press, Princeton, NJ, 1994 | MR | Zbl

[2] S. A. Kutuzov, “Orbits in ‘Disk + Halo’ galaxy model”, Order and Chaos in Stellar and Planetary Systems (Saint Petersburg, Russia, 17–24 August, 2003), Astronomical Society of the Pacific Conference Series, 316, eds. G. G. Byrd, K. V. Kholshevnikov, A. A. Myllri, I. I. Nikiforov, V. V. Orlov, ASP, San Francisco, 2004, 37–42

[3] E. Tresaco, A. Elipe, A. Riaguas, “Dynamics of a particle under the gravitational potential of a massive annulus: properties and equilibrium description”, Celestial Mech. Dynam. Astronom., 111:4 (2011), 431–447 | DOI | MR

[4] E. Tresaco, A. Elipe, A. Riaguas, “Computation of families of periodic orbits and bifurcations around a massive annulus”, Astrophys. Space Sci., 338:1 (2012), 23–33 | DOI

[5] E. Tresaco, A. Riaguas, A. Elipe, “Numerical analysis of periodic solutions and bifurcations in the planetary annulus problem”, Appl. Math. Comput., 225:1 (2013), 645–655 | DOI | MR

[6] A. Alberti, C. Vidal, “Dynamics of a particle in a gravitational field of a homogeneous annulus disk”, Celestial Mech. Dynam. Astronom., 98:2 (2007), 75–93 | DOI | MR

[7] T. Fukushima, “Precise computation of acceleration due to uniform ring or disk”, Celestial Mech. Dynam. Astronom., 108:4 (2010), 339–356 | DOI | MR

[8] A. Alberti, C. Vidal, “Singularities and dynamics aspects of a particle in a gravitational field of a central punctual body surrounded by a solid circular ring”, SIAM J. Appl. Dyn. Syst., 18:1 (2019), 1–32 | DOI | MR

[9] A. Alberti, C. Vidal, “Singularities in the gravitational attraction problem due to massive bodies”, Discrete Contin. Dyn. Syst., 26:3 (2009), 805–822 | DOI | MR

[10] A. V. Sakharov, “Some trajectories of a point in the potential of a fixed ring and center”, Nelineinaya dinam., 15:4 (2019), 587–592 | MR

[11] N.-E. Najid, M. Zegoumou, E. El Haj, “Dynamical behavior in the vicinity of a circular anisotropic ring”, Open Astr. J., 5 (2012), 54–60 | DOI

[12] G. N. Duboshin, Teoriya prityazheniya, Fizmatgiz, M., 1961

[13] H. Lass, L. Blitzer, “The gravitational potential due to uniform disks and rings”, Celest. Mech., 30:3 (1983), 225–228 | DOI | MR

[14] R. A. Broucke, A. Elipe, “The dynamics of orbits in a potential field of a solid circular ring”, Regul. Chaotic Dyn., 10:2 (2005), 129–143 | DOI | MR

[15] V. V. Sidorenko, “Dynamics of ‘jumping’ Trojans: a perturbative treatment”, Celestial Mech. Dynam. Astronom., 130:10 (2018), 67, 18 pp. | DOI | MR