Matrix Painlevé II equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 188-201 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We use the Painlevé–Kovalevskaya test to find three matrix versions of the Painlevé II equation. We interpret all these equations as group-invariant reductions of integrable matrix evolution equations, which allows constructing isomonodromic Lax pairs for them.
Mots-clés : Painlevé equation
Keywords: Lax representation, symmetric reduction.
@article{TMF_2021_207_2_a1,
     author = {V. E. Adler and V. V. Sokolov},
     title = {Matrix {Painlev\'e} {II} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {188--201},
     year = {2021},
     volume = {207},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a1/}
}
TY  - JOUR
AU  - V. E. Adler
AU  - V. V. Sokolov
TI  - Matrix Painlevé II equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 188
EP  - 201
VL  - 207
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a1/
LA  - ru
ID  - TMF_2021_207_2_a1
ER  - 
%0 Journal Article
%A V. E. Adler
%A V. V. Sokolov
%T Matrix Painlevé II equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 188-201
%V 207
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a1/
%G ru
%F TMF_2021_207_2_a1
V. E. Adler; V. V. Sokolov. Matrix Painlevé II equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 2, pp. 188-201. http://geodesic.mathdoc.fr/item/TMF_2021_207_2_a1/

[1] S. P. Balandin, V. V. Sokolov, “On the Painlevé test for non-Abelian equations”, Phys. Lett. A, 246:3–4 (1998), 267–272 | DOI | MR

[2] V. Retakh, V. Rubtsov, “Noncommutative Toda chain, Hankel quasideterminants and Painlevé II equation”, J. Phys. A: Math. Theor., 43:50 (2010), 505204, 13 pp. | DOI | MR | Zbl

[3] M. Irfan, “Lax pair representation and Darboux transformation of noncommutative Painlevé's second equation”, J. Geom. Phys., 62:7 (2012), 1575–1582 | DOI | MR

[4] A. A. Marchenko, Nelineinye uravneniya i operatornye algebry, Naukova dumka, Kiev, 1986 | MR

[5] P. J. Olver, V. V. Sokolov, “Integrable evolution equations on associative algebras”, Commun. Math. Phys., 193:2 (1998), 245–268 | DOI | MR

[6] F. A. Khalilov, E. Ya. Khruslov, “Matrix generalization of the modified Korteweg–de Vries equation”, Inverse Problems, 6:2 (1990), 193–204 | DOI | MR

[7] I. Gaiur, V. Rubtsov, Dualities for rational multi-particle Painlevé systems: Spectral versus Ruijsenaars, arXiv: 1912.12588

[8] P. R. Gordoa, A. Pickering, Z. N. Zhu, “On matrix Painlevé hierarchies”, J. Differ. Equ., 261:2 (2016), 1128–1175 | DOI | MR

[9] V. E. Adler, V. V. Sokolov, “Non-Abelian evolution systems with conservation laws”, Math. Phys. Anal. Geom., 24:1 (2021), 7, 24 pp., arXiv: 2008.09174 | DOI | MR