Complete cosmological model based on an asymmetric scalar Higgs doublet
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 133-176 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a complete cosmological model based on an asymmetric scalar doublet represented by the classical and phantom scalar Higgs fields. Moreover, we remove the assumption that the expansion rate of the Universe is nonnegative, which contradicts the complete system of Einstein's equations in several cases. We formulate a closed system of dynamical equations describing the evolution of the cosmological model and study the dependence of the topology of the Einstein–Higgs hypersurface of the five-dimensional phase space of the dynamical system that determines the global properties of the cosmological model based on the fundamental constants of the model. We analyze the dynamical system of the corresponding cosmological model qualitatively, construct asymptotic phase trajectories, and present numerical modeling results illustrating various types of behavior of the cosmological model.
Keywords: cosmological model, scalar field, asymmetric scalar doublet, asymptotic behavior, Einstein–Higgs hypersurface, expansion–contraction regime change.
@article{TMF_2021_207_1_a8,
     author = {Yu. G. Ignat'ev and I. A. Kokh},
     title = {Complete cosmological model based on an~asymmetric scalar {Higgs} doublet},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {133--176},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/}
}
TY  - JOUR
AU  - Yu. G. Ignat'ev
AU  - I. A. Kokh
TI  - Complete cosmological model based on an asymmetric scalar Higgs doublet
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 133
EP  - 176
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/
LA  - ru
ID  - TMF_2021_207_1_a8
ER  - 
%0 Journal Article
%A Yu. G. Ignat'ev
%A I. A. Kokh
%T Complete cosmological model based on an asymmetric scalar Higgs doublet
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 133-176
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/
%G ru
%F TMF_2021_207_1_a8
Yu. G. Ignat'ev; I. A. Kokh. Complete cosmological model based on an asymmetric scalar Higgs doublet. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 133-176. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/

[1] Yu. G. Ignatev, “Zakony sokhraneniya i termodinamicheskoe ravnovesie v obscherelyativistskoi kineticheskoi teorii neuprugo vzaimodeistvuyuschikh chastits”, Izv. vuzov. Fizika, 1983, no. 12, 9–14 | DOI

[2] Yu. G. Ignatev, R. R. Kuzeev, “Termodinamicheskoe ravnovesie samogravitiruyuschei plazmy so skalyarnym vzaimodeistviem”, Ukr. fiz. zhurn., 29:7 (1984), 1021–1025

[3] Yu. G. Ignatyev, R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology”, Grav. Cosmol., 12:2–3 (2006), 179–185, arXiv: 1101.1655

[4] K. A. Bronnikov, J. C. Fabris, “Regular phantom black holes”, Phys. Rev. Lett., 96:25 (2006), 251101, 4 pp. | DOI | MR

[5] S. V. Bolokhov, K. A. Bronnikov, M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar”, Class. Quant. Grav., 29:24 (2012), 245006, 13 pp. | DOI | MR

[6] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. III. Model s prityazheniem odnoimenno zaryazhennykh skalyarnykh chastits”, Izv. vuzov. Fizika, 55:11 (2012), 94–97 | DOI | MR

[7] J. M. Cline, S. Jeon, G. D. Moore, “The phantom menaced: constraints on low-energy effective ghosts”, Phys. Rev. D, 70:4 (2004), 043543, 4 pp., arXiv: hep-ph/0311312 | DOI

[8] R. Kallosh, J. Kang, A. Linde, V. Mukhanov, “The new ekpyrotic ghost”, J. Cosmol. Astropart. Phys., 2008:4 (2008), 018, 23 pp., arXiv: 0712.2040 | DOI | MR

[9] S. Nojiri, E. N. Saridakis, “Phantom without ghost”, Astrophys. Space Sci., 347:1 (2013), 221–226 | DOI

[10] F. Sbisà, “Classical and quantum ghosts”, Eur. J. Phys., 36:1 (2014), 015009, arXiv: 1406.4550 | DOI

[11] S. Yu. Vernov, “Tochnye resheniya nelokalnykh nelineinykh polevykh uravnenii v kosmologii”, TMF, 166:3 (2011), 452–464 | DOI | DOI | MR

[12] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp., arXiv: astro-ph/0301273 | DOI

[13] M. G. Richarte, G. M. Kremer, “Cosmological perturbations in transient phantom inflation scenarios”, Eur. Phys. J. C, 77:1 (2016), 51, 11 pp., arXiv: 1612.03822 | DOI

[14] A. Tripathi, A. Sangwan, H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift”, J. Cosmol. Astropart. Phys., 2017:06 (2017), 012, 15 pp. | DOI | MR

[15] Y. Ma, J. Zhang, S. Cao, X. Zheng, T. Xu, J. Qi, “The generalized cosmic equation of state: a revised study with cosmological standard rulers”, Eur. Phys. J. C, 77:12 (2017), 891, 9 pp.

[16] J. Meyers, G. Aldering, K. Barbary et. al, “The Hubble Space Telescope cluster supernova survey. III. Correlated properties of type Ia supernovae and their hosts at $0.9 z 1.46$”, Astrophys. J., 750:1 (2012), 1–23, arXiv: 1201.3989 | DOI

[17] R. Terlevich, E. Terlevich, J. Melnick, R. Chávez, M. Plionis, F. Bresolin, S. Basilakos, “On the road to precision cosmology with high-redshift H II galaxies”, Mon. Not. R. Astron. Soc., 451:3 (2015), 3001–3010, arXiv: 1505.04376 | DOI

[18] R. Chávez, M. Plionis, S. Basilakos, R. Terlevich, E. Terlevich, J. Melnick, F. Bresolin, A. L. González-Morán, “Constraining the dark energy equation of state with H II galaxies”, Mon. Not. R. Astron. Soc., 462:3 (2016), 2431–2439, arXiv: 1607.06458 | DOI

[19] R. Lazkoz, G. León, “Quintom cosmologies admitting either tracking or phantom attractors”, Phys. Lett. B, 638:4 (2006), 303–309, arXiv: astro-ph/0602590 | DOI

[20] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. I. Kanonicheskaya formulirovka klassicheskogo skalyarnogo vzaimodeistviya”, Izv. vuzov. Fizika, 55:2 (2012), 36–40 | DOI

[21] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. II. Formulirovka matematicheskoi modeli”, Izv. vuzov. Fizika, 55:5 (2012), 71–78 | DOI | MR

[22] Yu. G. Ignatev, “Neminimialnye makroskopicheskie modeli skalyarnogo polya, osnovannye na mikroskopicheskoi dinamike”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 1:6 (2014), 47–69

[23] Yu. G. Ignatyev, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. I. Microscopic dynamics”, Grav. Cosmol., 20:4 (2014), 299–303, arXiv: 1408.3404 | DOI | MR

[24] Yu. G. Ignatyev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. II. Macroscopic equations and cosmological models”, Grav. Cosmol., 20:4 (2014), 304–308 | DOI | MR

[25] Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics: extension of the theory to negative masses”, Grav. Cosmol., 21:4 (2015), 296–308 | DOI | MR

[26] Yu. G. Ignatyev, A. A. Agathonov, “Numerical models of cosmological evolution of a degenerate Fermi-system of scalar charged particles”, Grav. Cosmol., 21:2 (2015), 105–112 | DOI | MR

[27] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya boltsmanovskoi plazmy s mezhchastichnym fantomnym skalyarnym vzaimodeistviem. I. Simmetrichnye sluchai”, Izv. vuzov. Fizika, 57:12 (2014), 112–119 | DOI

[28] Yu. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357:1 (2015), 61, arXiv: 1411.6244 | DOI

[29] Yu. G. Ignatev, A. A. Agafonov, “Statisticheskie kosmologicheskie sistemy fermionov s mezhchastichnym fantomnym skalyarnym vzaimodeistviem”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 3:16 (2016), 48–90

[30] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical cosmological fermion systems with phantom scalar interaction of particles”, Grav. Cosmol., 24:1 (2018), 1–12 | DOI | MR

[31] Yu. G. Ignatev, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli s fantomnym skalyarnym polem”, Izv. vuzov. Fizika, 59:12 (2017), 83–87 | DOI

[32] Yu. G. Ignat'ev, A. A. Agathonov, “Qualitative and numerical analysis of a cosmological model based on a phantom scalar field with self-interaction”, Grav. Cosmol., 23:3 (2017), 230–235 | DOI | MR

[33] I. Ya. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, 11 pp., arXiv: astro-ph/0507067 | DOI

[34] I. Ya. Arefeva, S. Yu. Vernov, A. S. Koshelev, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41, arXiv: astro-ph/0412619 | DOI | DOI | MR | Zbl

[35] S. Yu. Vernov, “Postroenie tochnykh reshenii v dvukhpolevykh kosmologicheskikh modelyakh”, TMF, 155:1 (2008), 47–61 | DOI | DOI | MR | Zbl

[36] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”, Phys. Lett. B, 545:1–2 (2002), 23–29 | DOI

[37] Yu. G. Ignat'ev, “Qualitative and numerical analysis of a cosmological modely based on a classical massive scalar field”, Grav. Cosmol., 23:2 (2017), 131–141 | DOI | MR

[38] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. I. Qualitative analysis”, Grav. Cosmol., 25:1 (2019), 24–36, arXiv: 1908.03488 | DOI | MR | Zbl

[39] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. II. Numerical analysis”, Grav. Cosmol., 25:1 (2019), 37–43 | DOI | MR | Zbl

[40] Yu. G. Ignatev, A. R. Samigullina, “O predelnykh evklidovykh tsiklakh v kosmologicheskikh modelyakh, osnovannykh na skalyarnykh polyakh”, Izv. vuzov. Fizika, 62:4 (2019), 55–61 | DOI

[41] Yu. G. Ignat'ev, D. Yu. Ignat'ev, “A complete model of cosmological evolution of a scalar field with Higgs potential and Euclidean cycles”, Grav. Cosmol., 26:1 (2020), 29–37, arXiv: 2005.14010 | DOI | MR

[42] G. Leon, A. Paliathanasis, J. L. Morales-Martínez, “The past and future dynamics of quintom dark energy models”, Eur. Phys. J. C, 78:9 (2018), 753, 22 pp., arXiv: 1808.05634 | DOI

[43] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl

[44] Ya. B. Zeldovich, I. D. Novikov, Stroenie i evolyutsiya Vselennoi, Nauka, M., 1975

[45] Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, “Quintom cosmology: theoretical implications and observations”, Phys. Rep., 493:1 (2010), 1–60, arXiv: 0909.2776 | DOI | MR