@article{TMF_2021_207_1_a8,
author = {Yu. G. Ignat'ev and I. A. Kokh},
title = {Complete cosmological model based on an~asymmetric scalar {Higgs} doublet},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {133--176},
year = {2021},
volume = {207},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/}
}
TY - JOUR AU - Yu. G. Ignat'ev AU - I. A. Kokh TI - Complete cosmological model based on an asymmetric scalar Higgs doublet JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 133 EP - 176 VL - 207 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/ LA - ru ID - TMF_2021_207_1_a8 ER -
Yu. G. Ignat'ev; I. A. Kokh. Complete cosmological model based on an asymmetric scalar Higgs doublet. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 133-176. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a8/
[1] Yu. G. Ignatev, “Zakony sokhraneniya i termodinamicheskoe ravnovesie v obscherelyativistskoi kineticheskoi teorii neuprugo vzaimodeistvuyuschikh chastits”, Izv. vuzov. Fizika, 1983, no. 12, 9–14 | DOI
[2] Yu. G. Ignatev, R. R. Kuzeev, “Termodinamicheskoe ravnovesie samogravitiruyuschei plazmy so skalyarnym vzaimodeistviem”, Ukr. fiz. zhurn., 29:7 (1984), 1021–1025
[3] Yu. G. Ignatyev, R. F. Miftakhov, “Statistical systems of particles with scalar interaction in cosmology”, Grav. Cosmol., 12:2–3 (2006), 179–185, arXiv: 1101.1655
[4] K. A. Bronnikov, J. C. Fabris, “Regular phantom black holes”, Phys. Rev. Lett., 96:25 (2006), 251101, 4 pp. | DOI | MR
[5] S. V. Bolokhov, K. A. Bronnikov, M. V. Skvortsova, “Magnetic black universes and wormholes with a phantom scalar”, Class. Quant. Grav., 29:24 (2012), 245006, 13 pp. | DOI | MR
[6] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. III. Model s prityazheniem odnoimenno zaryazhennykh skalyarnykh chastits”, Izv. vuzov. Fizika, 55:11 (2012), 94–97 | DOI | MR
[7] J. M. Cline, S. Jeon, G. D. Moore, “The phantom menaced: constraints on low-energy effective ghosts”, Phys. Rev. D, 70:4 (2004), 043543, 4 pp., arXiv: hep-ph/0311312 | DOI
[8] R. Kallosh, J. Kang, A. Linde, V. Mukhanov, “The new ekpyrotic ghost”, J. Cosmol. Astropart. Phys., 2008:4 (2008), 018, 23 pp., arXiv: 0712.2040 | DOI | MR
[9] S. Nojiri, E. N. Saridakis, “Phantom without ghost”, Astrophys. Space Sci., 347:1 (2013), 221–226 | DOI
[10] F. Sbisà, “Classical and quantum ghosts”, Eur. J. Phys., 36:1 (2014), 015009, arXiv: 1406.4550 | DOI
[11] S. Yu. Vernov, “Tochnye resheniya nelokalnykh nelineinykh polevykh uravnenii v kosmologii”, TMF, 166:3 (2011), 452–464 | DOI | DOI | MR
[12] S. M. Carroll, M. Hoffman, M. Trodden, “Can the dark energy equation-of-state parameter $w$ be less than $-1$?”, Phys. Rev. D, 68:2 (2003), 023509, 11 pp., arXiv: astro-ph/0301273 | DOI
[13] M. G. Richarte, G. M. Kremer, “Cosmological perturbations in transient phantom inflation scenarios”, Eur. Phys. J. C, 77:1 (2016), 51, 11 pp., arXiv: 1612.03822 | DOI
[14] A. Tripathi, A. Sangwan, H. K. Jassal, “Dark energy equation of state parameter and its evolution at low redshift”, J. Cosmol. Astropart. Phys., 2017:06 (2017), 012, 15 pp. | DOI | MR
[15] Y. Ma, J. Zhang, S. Cao, X. Zheng, T. Xu, J. Qi, “The generalized cosmic equation of state: a revised study with cosmological standard rulers”, Eur. Phys. J. C, 77:12 (2017), 891, 9 pp.
[16] J. Meyers, G. Aldering, K. Barbary et. al, “The Hubble Space Telescope cluster supernova survey. III. Correlated properties of type Ia supernovae and their hosts at $0.9 z 1.46$”, Astrophys. J., 750:1 (2012), 1–23, arXiv: 1201.3989 | DOI
[17] R. Terlevich, E. Terlevich, J. Melnick, R. Chávez, M. Plionis, F. Bresolin, S. Basilakos, “On the road to precision cosmology with high-redshift H II galaxies”, Mon. Not. R. Astron. Soc., 451:3 (2015), 3001–3010, arXiv: 1505.04376 | DOI
[18] R. Chávez, M. Plionis, S. Basilakos, R. Terlevich, E. Terlevich, J. Melnick, F. Bresolin, A. L. González-Morán, “Constraining the dark energy equation of state with H II galaxies”, Mon. Not. R. Astron. Soc., 462:3 (2016), 2431–2439, arXiv: 1607.06458 | DOI
[19] R. Lazkoz, G. León, “Quintom cosmologies admitting either tracking or phantom attractors”, Phys. Lett. B, 638:4 (2006), 303–309, arXiv: astro-ph/0602590 | DOI
[20] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. I. Kanonicheskaya formulirovka klassicheskogo skalyarnogo vzaimodeistviya”, Izv. vuzov. Fizika, 55:2 (2012), 36–40 | DOI
[21] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya plazmy s mezhchastichnym skalyarnym vzaimodeistviem. II. Formulirovka matematicheskoi modeli”, Izv. vuzov. Fizika, 55:5 (2012), 71–78 | DOI | MR
[22] Yu. G. Ignatev, “Neminimialnye makroskopicheskie modeli skalyarnogo polya, osnovannye na mikroskopicheskoi dinamike”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 1:6 (2014), 47–69
[23] Yu. G. Ignatyev, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. I. Microscopic dynamics”, Grav. Cosmol., 20:4 (2014), 299–303, arXiv: 1408.3404 | DOI | MR
[24] Yu. G. Ignatyev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical systems with phantom scalar interaction in gravitation theory. II. Macroscopic equations and cosmological models”, Grav. Cosmol., 20:4 (2014), 304–308 | DOI | MR
[25] Yu. G. Ignatyev, “Nonminimal macroscopic models of a scalar field based on microscopic dynamics: extension of the theory to negative masses”, Grav. Cosmol., 21:4 (2015), 296–308 | DOI | MR
[26] Yu. G. Ignatyev, A. A. Agathonov, “Numerical models of cosmological evolution of a degenerate Fermi-system of scalar charged particles”, Grav. Cosmol., 21:2 (2015), 105–112 | DOI | MR
[27] Yu. G. Ignatev, “Kosmologicheskaya evolyutsiya boltsmanovskoi plazmy s mezhchastichnym fantomnym skalyarnym vzaimodeistviem. I. Simmetrichnye sluchai”, Izv. vuzov. Fizika, 57:12 (2014), 112–119 | DOI
[28] Yu. Ignat'ev, A. Agathonov, M. Mikhailov, D. Ignatyev, “Cosmological evolution of statistical system of scalar charged particles”, Astrophys. Space Sci., 357:1 (2015), 61, arXiv: 1411.6244 | DOI
[29] Yu. G. Ignatev, A. A. Agafonov, “Statisticheskie kosmologicheskie sistemy fermionov s mezhchastichnym fantomnym skalyarnym vzaimodeistviem”, Prostranstvo, vremya i fundamentalnye vzaimodeistviya, 3:16 (2016), 48–90
[30] Yu. G. Ignat'ev, A. A. Agathonov, D. Yu. Ignatyev, “Statistical cosmological fermion systems with phantom scalar interaction of particles”, Grav. Cosmol., 24:1 (2018), 1–12 | DOI | MR
[31] Yu. G. Ignatev, “Kachestvennyi i chislennyi analiz kosmologicheskoi modeli s fantomnym skalyarnym polem”, Izv. vuzov. Fizika, 59:12 (2017), 83–87 | DOI
[32] Yu. G. Ignat'ev, A. A. Agathonov, “Qualitative and numerical analysis of a cosmological model based on a phantom scalar field with self-interaction”, Grav. Cosmol., 23:3 (2017), 230–235 | DOI | MR
[33] I. Ya. Aref'eva, A. S. Koshelev, S. Yu. Vernov, “Crossing the $w=-1$ barrier in the D3-brane dark energy model”, Phys. Rev. D, 72:6 (2005), 064017, 11 pp., arXiv: astro-ph/0507067 | DOI
[34] I. Ya. Arefeva, S. Yu. Vernov, A. S. Koshelev, “Tochnoe reshenie v strunnoi kosmologicheskoi modeli”, TMF, 148:1 (2006), 23–41, arXiv: astro-ph/0412619 | DOI | DOI | MR | Zbl
[35] S. Yu. Vernov, “Postroenie tochnykh reshenii v dvukhpolevykh kosmologicheskikh modelyakh”, TMF, 155:1 (2008), 47–61 | DOI | DOI | MR | Zbl
[36] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state”, Phys. Lett. B, 545:1–2 (2002), 23–29 | DOI
[37] Yu. G. Ignat'ev, “Qualitative and numerical analysis of a cosmological modely based on a classical massive scalar field”, Grav. Cosmol., 23:2 (2017), 131–141 | DOI | MR
[38] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. I. Qualitative analysis”, Grav. Cosmol., 25:1 (2019), 24–36, arXiv: 1908.03488 | DOI | MR | Zbl
[39] Yu. G. Ignat'ev, I. A. Kokh, “Peculiarities of cosmological models based on a nonlinear asymmetric scalar doublet with minimal interaction. II. Numerical analysis”, Grav. Cosmol., 25:1 (2019), 37–43 | DOI | MR | Zbl
[40] Yu. G. Ignatev, A. R. Samigullina, “O predelnykh evklidovykh tsiklakh v kosmologicheskikh modelyakh, osnovannykh na skalyarnykh polyakh”, Izv. vuzov. Fizika, 62:4 (2019), 55–61 | DOI
[41] Yu. G. Ignat'ev, D. Yu. Ignat'ev, “A complete model of cosmological evolution of a scalar field with Higgs potential and Euclidean cycles”, Grav. Cosmol., 26:1 (2020), 29–37, arXiv: 2005.14010 | DOI | MR
[42] G. Leon, A. Paliathanasis, J. L. Morales-Martínez, “The past and future dynamics of quintom dark energy models”, Eur. Phys. J. C, 78:9 (2018), 753, 22 pp., arXiv: 1808.05634 | DOI
[43] O. I. Bogoyavlenskii, Metody kachestvennoi teorii dinamicheskikh sistem v astrofizike i gazovoi dinamike, Nauka, M., 1980 | MR | Zbl
[44] Ya. B. Zeldovich, I. D. Novikov, Stroenie i evolyutsiya Vselennoi, Nauka, M., 1975
[45] Y.-F. Cai, E. N. Saridakis, M. R. Setare, J.-Q. Xia, “Quintom cosmology: theoretical implications and observations”, Phys. Rep., 493:1 (2010), 1–60, arXiv: 0909.2776 | DOI | MR