Mots-clés : Fourier transform, Lamé parameter.
@article{TMF_2021_207_1_a7,
author = {A. A. Rakhmonov and U. D. Durdiev and Z. R. Bozorov},
title = {Problem of determining the~speed of sound and the~memory of an~anisotropic medium},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {112--132},
year = {2021},
volume = {207},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/}
}
TY - JOUR AU - A. A. Rakhmonov AU - U. D. Durdiev AU - Z. R. Bozorov TI - Problem of determining the speed of sound and the memory of an anisotropic medium JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 112 EP - 132 VL - 207 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/ LA - ru ID - TMF_2021_207_1_a7 ER -
%0 Journal Article %A A. A. Rakhmonov %A U. D. Durdiev %A Z. R. Bozorov %T Problem of determining the speed of sound and the memory of an anisotropic medium %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 112-132 %V 207 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/ %G ru %F TMF_2021_207_1_a7
A. A. Rakhmonov; U. D. Durdiev; Z. R. Bozorov. Problem of determining the speed of sound and the memory of an anisotropic medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 112-132. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/
[1] S. A. Chivilikhin, V. V. Gusarov, I. Yu. Popov, “Flows in nanostructures: hybrid classical-quantum models”, Nanosystems: Phys. Chem. Math., 3:1 (2012), 7–26
[2] A. Dvurechenskii, M. Alfimov, I. Suzdalev et al., “IV Nanotechnology International Forum 2011 (RUSNANOTECH 2011)”, J. Phys.: Conf. Ser., 345:1 (2012), 011001 | DOI
[3] F. Colombo, D. Guidetti, “A global in time existence and uniqueness result for a semilinear integrodifferential parabolic inverse problem in Sobolev spaces”, Math. Models Methods Appl. Sci., 17:4 (2007), 537–565 | DOI | MR
[4] F. Colombo, D. Guidetti, “Some results on the Identification of memory kernels”, Modern Aspects of the Theory of Partial Differential Equations, Operator Theory: Advances and Applications, 216, eds. M. Ruzhansky, J. Wirth, Springer, Basel, 2011, 121–138 | DOI | MR
[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR | Zbl
[6] S. I. Kabanikhin, Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka, Novosibirsk, 1989
[7] S. I. Kabanikhin, K. T. Iskakov, M. A. Bektemesov, M. A. Shishlenin, Algoritmy i chislennye metody resheniya obratnykh i nekorrektnykh zadach, ENU im. L. N. Gumileva, Astana, 2011
[8] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl
[9] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR
[10] D. K. Durdiev, “An identification problem of memory function of a medium and the form of an impulse source”, Zhurn. SFU. Ser. Matem. i fiz., 2:2 (2009), 127–136
[11] J. Janno, L. Von Welfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[12] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43
[13] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | DOI | MR
[14] V. G. Romanov, “O zadache opredeleniya struktury sloistoi sredy i formy impulsnogo istochnika”, Sib. matem. zhurn., 48:4 (2007), 867–881 | DOI | MR | Zbl
[15] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | DOI | MR
[16] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR
[17] D. K. Durdiev, “Inverse problem for the identification of a memory kernel from Maxwell's system integro-differential equations for a homogeneous anisotropic media”, Nanosystems: Phys. Chem. Math., 6:2 (2015), 268–273
[18] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Methods Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR
[19] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | DOI
[20] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | DOI | DOI
[21] D. K. Durdiev, “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v srede s pamyatyu”, Matematicheskii analiz i diskretnaya matematika, NGU, Novosibirsk, 1989, 19–26 | Zbl
[22] D. K. Durdiev, “K voprosu o korrektnosti odnoi obratnoi zadachi dlya giperbolicheskogo integrodifferentsialnogo uravneniya”, Sib. matem. zhurn., 33:3 (1992), 69–77 | DOI | MR | Zbl
[23] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | DOI | MR
[24] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. Comput. Appl., 7:2 (2019), 4–19
[25] U. Durdiev, Z. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Methods Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR
[26] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industr. matem., 22:4 (2019), 26–32 | DOI | DOI | MR
[27] D. K. Durdiev, U. D. Durdiev, “Ustoichivost resheniya obratnoi zadachi dlya integro-differentsialnogo uravneniya Maksvella v odnorodnoi anizotropnoi srede”, Uzbek. matem. zhurn., 2014, no. 2, 25–34
[28] A. L. Bukhgeim, M. V. Klibanov, “Edinstvennost v tselom odnogo klassa mnogomernykh obratnykh zadach”, Dokl. AN SSSR, 260:2 (1981), 269–272 | MR | Zbl
[29] A. L. Bukhgeim, V. G. Yakhno, “O dvukh obratnykh zadachakh dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 229:4 (1976), 785–786 | MR | Zbl
[30] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comp. Appl., 8:2 (2020), 28–40 | DOI
[31] Z. R. Bozorov, “Zadacha opredeleniya dvumernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 23:1 (2020), 28–45 | DOI | DOI | MR
[32] Zh. D. Totieva, “Odnomernye obratnye koeffitsientnye zadachi anizotropnoi vyazkouprugosti”, Sib. elektron. matem. izv., 16 (2019), 786–811 | DOI
[33] Zh. D. Totieva, D. K. Durdiev, “Zadacha ob opredelenii odnomernogo yadra uravneniya termovyazkouprugosti”, Matem. zametki, 103:1 (2018), 129–146 | DOI | DOI
[34] Zh. D. Totieva, “Zadacha ob opredelenii koeffitsienta teplovogo rasshireniya uravneniya termovyazkouprugosti”, Sib. elektron. matem. izv., 14 (2017), 1108–1119
[35] J. Jaan, L. Von Wolfersdorf, “An inverse problem for identification of a time- and space-dependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR
[36] A. L. Karchevskii, “Algoritm vosstanovleniya uprugikh postoyannykh anizotropnogo sloya, nakhodyaschegosya v izotropnoi gorizontalno-sloistoi srede”, Sib. elektron. matem. izv., 4 (2007), 20–51 | MR | Zbl
[37] A. Favaron, “Identification of memory kernels depending on time and on an angular variable”, Z. Anal. Anwendungen, 24:4 (2005), 735–762 | DOI | MR
[38] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., 22:1 (1994), 297–321 | DOI | MR
[39] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Math. Univ. Padova, 87 (1992), 105–138 | MR | Zbl
[40] A. Lorenzi, V. I. Priimenko, “Identification problem related to electro-magneto-elastic interactions”, J. Inv. Ill-Posed Problems, 4:2 (1996), 115–143 | DOI | MR | Zbl
[41] V. I. Priimenko, M. P. Vishnevskii, “An identification problem related to the Biot system”, J. Inv. Ill-Posed Problems, 23:3 (2015), 219–230 | DOI | MR | Zbl
[42] V. I. Priimenko, M. P. Vishnevskii, “Nonlinear mathematical problems of electromagnetoelastic interaction”, Nonlinear Analysis Research Trends, ed. I. N. Roux, Nova Sci., New York, 2008, 99–155 | MR
[43] A. A. Rahmonov, “Coefficient determination problem in the system of integro-differential equation for visco-elastic porous medium”, Uzbek Math. J., 2020:1 (2020), 102–115 | DOI | MR
[44] A. L. Karchevsky, V. G. Yakhno, “One-dimensional inverse problems for systems of elasticity with a source of explosive type”, J. Inv. Ill-Posed Problems, 7:4 (1999), 329–346 | DOI | MR
[45] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | Zbl
[46] A. L. Karchevsky, Y. M. Turganbayev, S. G. Rakhmetullina, Zh. T. Beldeubayeva, “Numerical solution of an inverse problem of determining the parameters of a source of groundwater pollution”, Eurasian J. Math. Comput. Appl., 5:1 (2017), 53–73
[47] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964