Problem of determining the speed of sound and the memory of an anisotropic medium
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 112-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the inverse problems of simultaneously determining two unknowns: the wave propagation velocity and the memory of a layered medium. To find them, we use the data of two observed fluctuations on the domain boundary. Estimates of the solution stability and uniqueness theorems for the considered problems are the main results.
Keywords: inverse problem, Neumann data, Heaviside step function, Dirac function
Mots-clés : Fourier transform, Lamé parameter.
@article{TMF_2021_207_1_a7,
     author = {A. A. Rakhmonov and U. D. Durdiev and Z. R. Bozorov},
     title = {Problem of determining the~speed of sound and the~memory of an~anisotropic medium},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--132},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/}
}
TY  - JOUR
AU  - A. A. Rakhmonov
AU  - U. D. Durdiev
AU  - Z. R. Bozorov
TI  - Problem of determining the speed of sound and the memory of an anisotropic medium
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 112
EP  - 132
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/
LA  - ru
ID  - TMF_2021_207_1_a7
ER  - 
%0 Journal Article
%A A. A. Rakhmonov
%A U. D. Durdiev
%A Z. R. Bozorov
%T Problem of determining the speed of sound and the memory of an anisotropic medium
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 112-132
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/
%G ru
%F TMF_2021_207_1_a7
A. A. Rakhmonov; U. D. Durdiev; Z. R. Bozorov. Problem of determining the speed of sound and the memory of an anisotropic medium. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 112-132. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a7/

[1] S. A. Chivilikhin, V. V. Gusarov, I. Yu. Popov, “Flows in nanostructures: hybrid classical-quantum models”, Nanosystems: Phys. Chem. Math., 3:1 (2012), 7–26

[2] A. Dvurechenskii, M. Alfimov, I. Suzdalev et al., “IV Nanotechnology International Forum 2011 (RUSNANOTECH 2011)”, J. Phys.: Conf. Ser., 345:1 (2012), 011001 | DOI

[3] F. Colombo, D. Guidetti, “A global in time existence and uniqueness result for a semilinear integrodifferential parabolic inverse problem in Sobolev spaces”, Math. Models Methods Appl. Sci., 17:4 (2007), 537–565 | DOI | MR

[4] F. Colombo, D. Guidetti, “Some results on the Identification of memory kernels”, Modern Aspects of the Theory of Partial Differential Equations, Operator Theory: Advances and Applications, 216, eds. M. Ruzhansky, J. Wirth, Springer, Basel, 2011, 121–138 | DOI | MR

[5] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 8, Elektrodinamika sploshnykh sred, Nauka, M., 1982 | MR | Zbl

[6] S. I. Kabanikhin, Proektsionno-raznostnye metody opredeleniya koeffitsientov giperbolicheskikh uravnenii, Nauka, Novosibirsk, 1989

[7] S. I. Kabanikhin, K. T. Iskakov, M. A. Bektemesov, M. A. Shishlenin, Algoritmy i chislennye metody resheniya obratnykh i nekorrektnykh zadach, ENU im. L. N. Gumileva, Astana, 2011

[8] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR | Zbl

[9] D. K. Durdiev, “Obratnaya zadacha opredeleniya dvukh koeffitsientov v odnom integrodifferentsialnom volnovom uravnenii”, Sib. zhurn. industr. matem., 12:3 (2009), 28–40 | MR

[10] D. K. Durdiev, “An identification problem of memory function of a medium and the form of an impulse source”, Zhurn. SFU. Ser. Matem. i fiz., 2:2 (2009), 127–136

[11] J. Janno, L. Von Welfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[12] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavk. matem. zhurn., 17:4 (2015), 18–43

[13] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache ob opredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 15:1 (2012), 86–98 | DOI | MR

[14] V. G. Romanov, “O zadache opredeleniya struktury sloistoi sredy i formy impulsnogo istochnika”, Sib. matem. zhurn., 48:4 (2007), 867–881 | DOI | MR | Zbl

[15] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Matem. zametki, 97:6 (2015), 855–867 | DOI | DOI | MR

[16] D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82 | MR

[17] D. K. Durdiev, “Inverse problem for the identification of a memory kernel from Maxwell's system integro-differential equations for a homogeneous anisotropic media”, Nanosystems: Phys. Chem. Math., 6:2 (2015), 268–273

[18] D. K. Durdiev, A. A. Rahmonov, “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Math. Methods Appl. Sci., 43:15 (2020), 8776–8796 | DOI | MR

[19] D. K. Durdiev, A. A. Rakhmonov, “Obratnaya zadacha dlya sistemy integro-differentsialnykh uravnenii SH-voln v vyazkouprugoi poristoi srede: globalnaya razreshimost”, TMF, 195:3 (2018), 491–506 | DOI | DOI

[20] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matem., 23:2 (2020), 63–80 | DOI | DOI

[21] D. K. Durdiev, “Obratnaya zadacha dlya trekhmernogo volnovogo uravneniya v srede s pamyatyu”, Matematicheskii analiz i diskretnaya matematika, NGU, Novosibirsk, 1989, 19–26 | Zbl

[22] D. K. Durdiev, “K voprosu o korrektnosti odnoi obratnoi zadachi dlya giperbolicheskogo integrodifferentsialnogo uravneniya”, Sib. matem. zhurn., 33:3 (1992), 69–77 | DOI | MR | Zbl

[23] U. D. Durdiev, “Chislennoe opredelenie zavisimosti dielektricheskoi pronitsaemosti sloistoi sredy ot vremennoi chastoty”, Sib. elektron. matem. izv., 17 (2020), 179–189 | DOI | MR

[24] U. D. Durdiev, “A problem of identification of a special 2D memory kernel in an integro-differential hyperbolic equation”, Eurasian J. Math. Comput. Appl., 7:2 (2019), 4–19

[25] U. Durdiev, Z. Totieva, “A problem of determining a special spatial part of 3D memory kernel in an integro-differential hyperbolic equation”, Math. Methods Appl. Sci., 42:18 (2019), 7440–7451 | DOI | MR

[26] U. D. Durdiev, “Obratnaya zadacha dlya sistemy uravnenii vyazkouprugosti v odnorodnykh anizotropnykh sredakh”, Sib. zhurn. industr. matem., 22:4 (2019), 26–32 | DOI | DOI | MR

[27] D. K. Durdiev, U. D. Durdiev, “Ustoichivost resheniya obratnoi zadachi dlya integro-differentsialnogo uravneniya Maksvella v odnorodnoi anizotropnoi srede”, Uzbek. matem. zhurn., 2014, no. 2, 25–34

[28] A. L. Bukhgeim, M. V. Klibanov, “Edinstvennost v tselom odnogo klassa mnogomernykh obratnykh zadach”, Dokl. AN SSSR, 260:2 (1981), 269–272 | MR | Zbl

[29] A. L. Bukhgeim, V. G. Yakhno, “O dvukh obratnykh zadachakh dlya differentsialnykh uravnenii”, Dokl. AN SSSR, 229:4 (1976), 785–786 | MR | Zbl

[30] Z. R. Bozorov, “Numerical determining a memory function of a horizontally-stratified elastic medium with aftereffect”, Eurasian J. Math. Comp. Appl., 8:2 (2020), 28–40 | DOI

[31] Z. R. Bozorov, “Zadacha opredeleniya dvumernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 23:1 (2020), 28–45 | DOI | DOI | MR

[32] Zh. D. Totieva, “Odnomernye obratnye koeffitsientnye zadachi anizotropnoi vyazkouprugosti”, Sib. elektron. matem. izv., 16 (2019), 786–811 | DOI

[33] Zh. D. Totieva, D. K. Durdiev, “Zadacha ob opredelenii odnomernogo yadra uravneniya termovyazkouprugosti”, Matem. zametki, 103:1 (2018), 129–146 | DOI | DOI

[34] Zh. D. Totieva, “Zadacha ob opredelenii koeffitsienta teplovogo rasshireniya uravneniya termovyazkouprugosti”, Sib. elektron. matem. izv., 14 (2017), 1108–1119

[35] J. Jaan, L. Von Wolfersdorf, “An inverse problem for identification of a time- and space-dependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR

[36] A. L. Karchevskii, “Algoritm vosstanovleniya uprugikh postoyannykh anizotropnogo sloya, nakhodyaschegosya v izotropnoi gorizontalno-sloistoi srede”, Sib. elektron. matem. izv., 4 (2007), 20–51 | MR | Zbl

[37] A. Favaron, “Identification of memory kernels depending on time and on an angular variable”, Z. Anal. Anwendungen, 24:4 (2005), 735–762 | DOI | MR

[38] A. Lorenzi, “An identification problem related to a nonlinear hyperbolic integro-differential equation”, Nonlinear Anal., 22:1 (1994), 297–321 | DOI | MR

[39] A. Lorenzi, E. Paparoni, “Direct and inverse problems in the theory of materials with memory”, Rend. Sem. Math. Univ. Padova, 87 (1992), 105–138 | MR | Zbl

[40] A. Lorenzi, V. I. Priimenko, “Identification problem related to electro-magneto-elastic interactions”, J. Inv. Ill-Posed Problems, 4:2 (1996), 115–143 | DOI | MR | Zbl

[41] V. I. Priimenko, M. P. Vishnevskii, “An identification problem related to the Biot system”, J. Inv. Ill-Posed Problems, 23:3 (2015), 219–230 | DOI | MR | Zbl

[42] V. I. Priimenko, M. P. Vishnevskii, “Nonlinear mathematical problems of electromagnetoelastic interaction”, Nonlinear Analysis Research Trends, ed. I. N. Roux, Nova Sci., New York, 2008, 99–155 | MR

[43] A. A. Rahmonov, “Coefficient determination problem in the system of integro-differential equation for visco-elastic porous medium”, Uzbek Math. J., 2020:1 (2020), 102–115 | DOI | MR

[44] A. L. Karchevsky, V. G. Yakhno, “One-dimensional inverse problems for systems of elasticity with a source of explosive type”, J. Inv. Ill-Posed Problems, 7:4 (1999), 329–346 | DOI | MR

[45] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matem., 4:3 (2001), 259–268 | Zbl

[46] A. L. Karchevsky, Y. M. Turganbayev, S. G. Rakhmetullina, Zh. T. Beldeubayeva, “Numerical solution of an inverse problem of determining the parameters of a source of groundwater pollution”, Eurasian J. Math. Comput. Appl., 5:1 (2017), 53–73

[47] R. Kurant, Uravneniya s chastnymi proizvodnymi, Mir, M., 1964