The number of endpoints of a random walk on a semi-infinite metric path graph
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 104-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study a semi-infinite metric path graph and construct the long-time asymptotic logarithm of the number of possible endpoints of a random walk.
Keywords: abstract prime number, counting function, Bose–Maslov distribution.
@article{TMF_2021_207_1_a6,
     author = {V. L. Chernyshev and D. S. Minenkov and A. A. Tolchennikov},
     title = {The~number of endpoints of a~random walk on a~semi-infinite metric path graph},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {104--111},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a6/}
}
TY  - JOUR
AU  - V. L. Chernyshev
AU  - D. S. Minenkov
AU  - A. A. Tolchennikov
TI  - The number of endpoints of a random walk on a semi-infinite metric path graph
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 104
EP  - 111
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a6/
LA  - ru
ID  - TMF_2021_207_1_a6
ER  - 
%0 Journal Article
%A V. L. Chernyshev
%A D. S. Minenkov
%A A. A. Tolchennikov
%T The number of endpoints of a random walk on a semi-infinite metric path graph
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 104-111
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a6/
%G ru
%F TMF_2021_207_1_a6
V. L. Chernyshev; D. S. Minenkov; A. A. Tolchennikov. The number of endpoints of a random walk on a semi-infinite metric path graph. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 104-111. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a6/

[1] V. L. Chernyshev, A. A. Tolchennikov, “Polynomial approximation for the number of all possible endpoints of a random walk on a metric graph”, Electron. Notes Discrete Math., 70 (2018), 31–35 | DOI

[2] G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs, Mathematical Surveys and Monographs, 186, AMS, Providence, RI, 2013 | DOI

[3] L. Lovász, “Random walks on graphs: A survey”: Paul Erdős, Combinatorics, Paul Erdős is Eighty, v. 2, J'anos Bolyai Mathematical Society, Budapest, 1993, 1–46

[4] V. L. Chernyshev, A. I. Shafarevich, “Statistics of Gaussian packets on metric and decorated graphs”, Philos. Trans. R. Soc. London Ser. A, 372:2007 (2014), 20130145, 11 pp. | DOI

[5] V. L. Chernyshev, A. A. Tolchennikov, “Correction to the leading term of asymptotics in the problem of counting the number of points moving on a metric tree”, Russ. J. Math. Phys., 24:3 (2017), 290–298 | DOI

[6] V. L. Chernyshev, A. A. Tolchennikov, “The second term in the asymptotics for the number of points moving along a metric graph”, Regul. Chaotic Dyn., 22:8 (2017), 937–948 | DOI

[7] V. E. Nazaikinskii, “On the asymptotics of the number of states for the Bose–Maslov gas”, Math. Notes, 91:5–6 (2012), 816–823 | DOI

[8] V. E. Nazaikinskii, “Ob entropii gaza Boze–Maslova”, Dokl. RAN, 448:3 (2013), 266–268 | DOI

[9] V. L. Chernyshev, T. W. Hilberdink, V. E. Nazaikinskii, “Asymptotics of the number of restricted partitions”, Russ. J. Math. Phys., 27:4 (2020), 456–468 | DOI

[10] K. S. Kölbig, “Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function”, Math. Comput., 24:111 (1970), 679–696 | DOI