Limit distribution of the nodal domain number for the right-isosceles triangle billiard
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 99-103 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present the probability distribution function of the nodal domain number for the right-isosceles triangle billiard. This is the first explicit result for a nonseparable plane polygonal billiard. The distribution function has a peak at $2/\pi$ (the same as for integrable billiards) and also at $2\sqrt{2}/\pi$. The only exact results previously known in this direction correspond to integrable billiards that are separable.
Mots-clés : billiard, limit distribution
Keywords: integrable system.
@article{TMF_2021_207_1_a5,
     author = {M. Jain and B. Bamal and S. R. Jain},
     title = {Limit distribution of the~nodal domain number for the~right-isosceles triangle billiard},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {99--103},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a5/}
}
TY  - JOUR
AU  - M. Jain
AU  - B. Bamal
AU  - S. R. Jain
TI  - Limit distribution of the nodal domain number for the right-isosceles triangle billiard
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 99
EP  - 103
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a5/
LA  - ru
ID  - TMF_2021_207_1_a5
ER  - 
%0 Journal Article
%A M. Jain
%A B. Bamal
%A S. R. Jain
%T Limit distribution of the nodal domain number for the right-isosceles triangle billiard
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 99-103
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a5/
%G ru
%F TMF_2021_207_1_a5
M. Jain; B. Bamal; S. R. Jain. Limit distribution of the nodal domain number for the right-isosceles triangle billiard. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 99-103. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a5/

[1] M. V. Berry, “Regular and irregular motion”, AIP Conf. Proc., 46:1 (1978), 16–120 | DOI | MR

[2] S. R. Jain, S. V. Lawande, “Almost integrable billiards”, Proc. Indian Nat. Sci. Acad. Part A, 61:5 (1995), 275–336 | MR

[3] S. Tabachnikov, Geometriya i billiardy, RKhD, M.–Izhevsk, 2011 | DOI | MR

[4] S. R. Jain, “Ground state of an arbitrary triangle with a Calogero–Sutherland–Moser potential”, Pramana, 72:3 (2009), 611–615 | DOI

[5] C. Itzykson, J. M. Luck, “Arithmetical degeneracies in simple quantum systems”, J. Phys. A: Math. Gen., 19:2 (1986), 211–239 | DOI | MR

[6] C. Itzykson, “Simple integrable systems and Lie algebras”, Internat. J. Modern Phys. A, 1:1 (1985), 65–115 | DOI | MR

[7] P. J. Richens, M. V. Berry, “Pseudointegrable systems in classical and quantum mechanics”, Phys. D, 2:3 (1981), 495–512 | DOI | MR

[8] D. Biswas, S. R. Jain, “Quantum description of a pseudointegrable system: The $\pi/3$-rhombus billiard”, Phys. Rev. A, 42:6 (1990), 3170–3185 | DOI

[9] B. Grémaud, S. R. Jain, “Spacing distributions for rhombus billiards”, J. Phys. A: Math. Gen., 31:37 (1998), L637–L643 | MR

[10] G. Auberson, S. R. Jain, A. Khare, “A class of $N$-body problems with nearest- and next-to-nearest-neighbour interactions”, J. Phys. A: Math. Gen., 34:4 (2001), 695–724, arXiv: cond-mat/0004012 | DOI | MR

[11] S. R. Jain, R. Samajdar, “Nodal portraits of quantum billiards: Domains, lines, and statistics”, Rev. Modern Phys., 89:4 (2017), 045005, 66 pp., arXiv: 1709.03650 | DOI | MR

[12] R. Samajdar, S. R. Jain, “Nodal domains of the equilateral triangle billiard”, J. Phys. A: Math. Theor., 47:19 (2014), 195101, 22 pp., arXiv: 1401.5911 | DOI | MR

[13] R. Samajdar, S. R. Jain, “A nodal domain theorem for integrable billiards in two dimensions”, Ann. Phys., 351 (2014), 1–12, arXiv: 1404.5269 | DOI | MR

[14] N. Manjunath, R. Samajdar, S. R. Jain, “A difference-equation formalism for the nodal domains of separable billiards”, Ann. Phys., 372 (2016), 68–73 | DOI | MR

[15] R. Courant, “Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1923 (1923), 81–84 | Zbl

[16] U. Smilansky, R. Sankaranarayanan, Nodal domain distribution of rectangular drums, arXiv: nlin/0503002

[17] A. Aronovitch, R. Band, D. Fajman, S. Gnutzmann, “Nodal domains of a non-separable problem – the right-angled isosceles triangle”, J. Phys. A: Math. Theor., 45:8 (2012), 085209, 18 pp., arXiv: 1110.1521 | DOI | MR