Mots-clés : Jacobi polynomial.
@article{TMF_2021_207_1_a3,
author = {E. I. Jafarov and S. M. Nagiyev},
title = {Angular part of {the~Schr\"odinger} equation for {the~Hautot} potential as a~harmonic oscillator with a~coordinate-dependent mass in a~uniform gravitational field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {58--71},
year = {2021},
volume = {207},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/}
}
TY - JOUR AU - E. I. Jafarov AU - S. M. Nagiyev TI - Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 58 EP - 71 VL - 207 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/ LA - ru ID - TMF_2021_207_1_a3 ER -
%0 Journal Article %A E. I. Jafarov %A S. M. Nagiyev %T Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 58-71 %V 207 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/ %G ru %F TMF_2021_207_1_a3
E. I. Jafarov; S. M. Nagiyev. Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 58-71. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/
[1] D. J. BenDaniel, C. B. Duke, “Space-charge effects on electron tunneling”, Phys. Rev., 152:2 (1966), 683–692 | DOI
[2] P. M. Mathews, M. Lakshmanan, “On a unique nonlinear oscillator”, Quart. Appl. Math., 32 (1974), 215–218 | DOI | MR
[3] O. von Roos, “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27:12 (1983), 7547–7552 | DOI
[4] J.-M. Lévy-Leblond, “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52:3 (1995), 1845–1849 | DOI | MR
[5] A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, “Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60:6 (1999), 4318–4325 | DOI
[6] J. F. Cariñena, M. F. Rañada, M. Santander, “One-dimensional model of a quantum nonlinear harmonic oscillator”, Rep. Math. Phys., 54:2 (2004), 285–293 | DOI | MR
[7] A. D. Alhaidari, “Solution of the Dirac equation with position-dependent mass in the Coulomb field”, Phys. Lett. A, 322:1–2 (2004), 72–77 | DOI | MR
[8] C. Quesne, V. M. Tkachuk, “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37:14 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR
[9] Kh. Raibongshi, N. N. Singkh, “Postroenie tochno reshaemykh potentsialov v $D$-mernom uravnenii Shredingera s massoi, zavisyaschei ot koordinat, pri pomoschi metoda preobrazovanii”, TMF, 183:2 (2015), 312–328 | DOI | DOI | MR
[10] Kh. Raibongshi, “Tochno reshaemye potentsialy i resheniya dlya svyazannykh sostoyanii uravneniya Shredingera v $D$-mernom prostranstve s zavisyaschei ot koordinat massoi”, TMF, 184:1 (2015), 117–133 | DOI | DOI | MR
[11] J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach”, J. Phys. A: Math. Theor., 50:46 (2017), 465202, 20 pp. | DOI | MR
[12] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Éditions de Physique, Les Ulis Cedex, France, 1988 | DOI
[13] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, J. Navarro, “Structure and energetics of mixed $^4$He–$^3$He drops”, Phys. Rev. B, 56:14 (1997), 8997–9003 | DOI
[14] P. Harrison, Quantum Wells, Wires and Dots, John Wiley and Sons, New York, 2000
[15] M. Lozada-Cassou, S.-H. Dong, J. Yu, “Quantum features of semiconductor quantum dots”, Phys. Lett. A, 331:1–2 (2004), 45–52 | DOI
[16] S.-H. Dong, M. Lozada-Cassou, “Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential”, Phys. Lett. A, 337:4–6 (2005), 313–320 | DOI | MR
[17] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules”, Phys. Rev., 28:6 (1926), 1049–1070 | DOI
[18] P. A. M. Dirac, Principles of Quantum Mechanics, Oxford Univ. Press, Oxford, 1982 | MR | Zbl
[19] O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie”, Z. Phys., 37:12 (1926), 895–906 | DOI
[20] W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie”, Z. Phys., 40:1–2 (1926), 117–133 | DOI
[21] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cimento Ser. A, 55:2 (1968), 233–257 | DOI
[22] S. M. Nagiyev, K. S. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377:10–11 (2013), 747–752 | DOI | MR
[23] P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels”, Phys. Rev., 34:1 (1929), 57–64 | DOI
[24] G. Pöschl, E. Teller, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators”, Z. Phys., 83:3–4 (1933), 143–151 | DOI
[25] L. Hulthén, “Über die Eigenlösungen der Schrödinger–Gleichung des Deuterons”, Ark. Mat. Astron. Fys., 28A:5 (1942), 1–12 | MR
[26] R. D. Woods, D. S. Saxon, “Diffuse surface optical model for nucleon-nuclei scattering”, Phys. Rev., 95:2 (1954), 577–578 | DOI
[27] H. Hartmann, “Die Bewegung eines Körpers in einem ringförmigen Potentialfeld”, Theoret. Chim. Acta, 24:2–3 (1972), 201–206 | DOI
[28] A. Hautot, “Exact motion in noncentral electric fields”, J. Math. Phys., 14:10 (1973), 1320–1327 | DOI
[29] Sh. M. Nagiyev, A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential”, Internat. J. Modern Phys. A, 34:17 (2019), 1950089, 17 pp. | DOI | MR
[30] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | DOI | MR
[31] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR
[32] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, 2010 | DOI | MR
[33] G. Ghosh, T. K. Roy, R. Gangopadhyay, “Dynamical symmetry and exact solvability”, Phys. Rev. A, 36:3 (1987), 1449–1451 | DOI
[34] Y. Alhassid, F. Gürsey, F. Iachello, “Potential scattering, transfer matrix, and group theory”, Phys. Rev. Lett., 50:12 (1985), 873–876 | DOI | MR
[35] E. I. Jafarov, S. M. Nagiyev, A. M. Jafarova, “Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator”, Rep. Math. Phys., 86:1 (2020), 25–37 | DOI | MR
[36] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 2, Spetsialnye funktsii, Nauka, M., 1983 | MR | MR | Zbl
[37] R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteanu, “Parabolic quantum wells with the GaAs-Al$_x$Ga$_{1-x}$As system”, Phys. Rev. B, 29:6 (1984), 3740–3743 | DOI
[38] R. C. Miller, D. A. Kleinman, A. C. Gossard, “Energy-gap discontinuities and effective masses for GaAs-Al$_x$Ga$_{1-x}$As quantum wells”, Phys. Rev. B, 29:12 (1984), 7085–7087 | DOI
[39] R. C. Miller, A. C. Gossard, D. A. Kleinman, “Band offsets from two special GaAs-Al$_x$Ga$_{1-x}$As quantum well structures”, Phys. Rev. B, 32:8 (1985), 5443–5446 | DOI
[40] A. C. Gossard, R. C. Miller, W. Wiegmann, “MBE growth and energy levels of quantum wells with special shapes”, Surf. Sci., 174:1 (1986), 131–135 | DOI