Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 58-71 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct an exactly solvable model of a linear harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. This model is placed in an infinitely deep potential well with the width $2a$ and corresponds to the exact solution of the angular part of the Schrödinger equation with one of the Hautot potentials. The wave functions of the oscillator model are expressed in terms of Jacobi polynomials. In the limit $a\to\infty$, the equation of motion, wave functions, and energy spectrum of the model correctly reduce to the corresponding results of the ordinary nonrelativistic harmonic oscillator with a constant mass. We obtain a new asymptotic relation between the Jacobi and Hermite polynomials and prove it by two different methods.
Keywords: Hautot potential, oscillator with coordinate-dependent mass, gravitational field
Mots-clés : Jacobi polynomial.
@article{TMF_2021_207_1_a3,
     author = {E. I. Jafarov and S. M. Nagiyev},
     title = {Angular part of {the~Schr\"odinger} equation for {the~Hautot} potential as a~harmonic oscillator with a~coordinate-dependent mass in a~uniform gravitational field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {58--71},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/}
}
TY  - JOUR
AU  - E. I. Jafarov
AU  - S. M. Nagiyev
TI  - Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 58
EP  - 71
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/
LA  - ru
ID  - TMF_2021_207_1_a3
ER  - 
%0 Journal Article
%A E. I. Jafarov
%A S. M. Nagiyev
%T Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 58-71
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/
%G ru
%F TMF_2021_207_1_a3
E. I. Jafarov; S. M. Nagiyev. Angular part of the Schrödinger equation for the Hautot potential as a harmonic oscillator with a coordinate-dependent mass in a uniform gravitational field. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 58-71. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a3/

[1] D. J. BenDaniel, C. B. Duke, “Space-charge effects on electron tunneling”, Phys. Rev., 152:2 (1966), 683–692 | DOI

[2] P. M. Mathews, M. Lakshmanan, “On a unique nonlinear oscillator”, Quart. Appl. Math., 32 (1974), 215–218 | DOI | MR

[3] O. von Roos, “Position-dependent effective masses in semiconductor theory”, Phys. Rev. B, 27:12 (1983), 7547–7552 | DOI

[4] J.-M. Lévy-Leblond, “Position-dependent effective mass and Galilean invariance”, Phys. Rev. A, 52:3 (1995), 1845–1849 | DOI | MR

[5] A. R. Plastino, A. Rigo, M. Casas, F. Garcias, A. Plastino, “Supersymmetric approach to quantum systems with position-dependent effective mass”, Phys. Rev. A, 60:6 (1999), 4318–4325 | DOI

[6] J. F. Cariñena, M. F. Rañada, M. Santander, “One-dimensional model of a quantum nonlinear harmonic oscillator”, Rep. Math. Phys., 54:2 (2004), 285–293 | DOI | MR

[7] A. D. Alhaidari, “Solution of the Dirac equation with position-dependent mass in the Coulomb field”, Phys. Lett. A, 322:1–2 (2004), 72–77 | DOI | MR

[8] C. Quesne, V. M. Tkachuk, “Deformed algebras, position-dependent effective masses and curved spaces: an exactly solvable Coulomb problem”, J. Phys. A: Math. Gen., 37:14 (2004), 4267–4281, arXiv: math-ph/0403047 | DOI | MR

[9] Kh. Raibongshi, N. N. Singkh, “Postroenie tochno reshaemykh potentsialov v $D$-mernom uravnenii Shredingera s massoi, zavisyaschei ot koordinat, pri pomoschi metoda preobrazovanii”, TMF, 183:2 (2015), 312–328 | DOI | DOI | MR

[10] Kh. Raibongshi, “Tochno reshaemye potentsialy i resheniya dlya svyazannykh sostoyanii uravneniya Shredingera v $D$-mernom prostranstve s zavisyaschei ot koordinat massoi”, TMF, 184:1 (2015), 117–133 | DOI | DOI | MR

[11] J. F. Cariñena, M. F. Rañada, M. Santander, “Quantization of Hamiltonian systems with a position dependent mass: Killing vector fields and Noether momenta approach”, J. Phys. A: Math. Theor., 50:46 (2017), 465202, 20 pp. | DOI | MR

[12] G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructure, Les Éditions de Physique, Les Ulis Cedex, France, 1988 | DOI

[13] M. Barranco, M. Pi, S. M. Gatica, E. S. Hernández, J. Navarro, “Structure and energetics of mixed $^4$He–$^3$He drops”, Phys. Rev. B, 56:14 (1997), 8997–9003 | DOI

[14] P. Harrison, Quantum Wells, Wires and Dots, John Wiley and Sons, New York, 2000

[15] M. Lozada-Cassou, S.-H. Dong, J. Yu, “Quantum features of semiconductor quantum dots”, Phys. Lett. A, 331:1–2 (2004), 45–52 | DOI

[16] S.-H. Dong, M. Lozada-Cassou, “Exact solutions of the Schrödinger equation with the position-dependent mass for a hard-core potential”, Phys. Lett. A, 337:4–6 (2005), 313–320 | DOI | MR

[17] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules”, Phys. Rev., 28:6 (1926), 1049–1070 | DOI

[18] P. A. M. Dirac, Principles of Quantum Mechanics, Oxford Univ. Press, Oxford, 1982 | MR | Zbl

[19] O. Klein, “Quantentheorie und fünfdimensionale Relativitätstheorie”, Z. Phys., 37:12 (1926), 895–906 | DOI

[20] W. Gordon, “Der Comptoneffekt nach der Schrödingerschen Theorie”, Z. Phys., 40:1–2 (1926), 117–133 | DOI

[21] V. G. Kadyshevsky, R. M. Mir-Kasimov, N. B. Skachkov, “Quasi-potential approach and the expansion in relativistic spherical functions”, Nuovo Cimento Ser. A, 55:2 (1968), 233–257 | DOI

[22] S. M. Nagiyev, K. S. Jafarova, “Relativistic quantum particle in a time-dependent homogeneous field”, Phys. Lett. A, 377:10–11 (2013), 747–752 | DOI | MR

[23] P. M. Morse, “Diatomic molecules according to the wave mechanics. II. Vibrational levels”, Phys. Rev., 34:1 (1929), 57–64 | DOI

[24] G. Pöschl, E. Teller, “Bemerkungen zur Quantenmechanik des anharmonischen Oszillators”, Z. Phys., 83:3–4 (1933), 143–151 | DOI

[25] L. Hulthén, “Über die Eigenlösungen der Schrödinger–Gleichung des Deuterons”, Ark. Mat. Astron. Fys., 28A:5 (1942), 1–12 | MR

[26] R. D. Woods, D. S. Saxon, “Diffuse surface optical model for nucleon-nuclei scattering”, Phys. Rev., 95:2 (1954), 577–578 | DOI

[27] H. Hartmann, “Die Bewegung eines Körpers in einem ringförmigen Potentialfeld”, Theoret. Chim. Acta, 24:2–3 (1972), 201–206 | DOI

[28] A. Hautot, “Exact motion in noncentral electric fields”, J. Math. Phys., 14:10 (1973), 1320–1327 | DOI

[29] Sh. M. Nagiyev, A. I. Ahmadov, “Exact solution of the relativistic finite-difference equation for the Coulomb plus a ring-shaped-like potential”, Internat. J. Modern Phys. A, 34:17 (2019), 1950089, 17 pp. | DOI | MR

[30] A. F. Nikiforov, V. B. Uvarov, Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1984 | DOI | MR

[31] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974 | MR

[32] R. Koekoek, P. A. Lesky, R. F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their $q$-Analogues, Springer, Berlin, 2010 | DOI | MR

[33] G. Ghosh, T. K. Roy, R. Gangopadhyay, “Dynamical symmetry and exact solvability”, Phys. Rev. A, 36:3 (1987), 1449–1451 | DOI

[34] Y. Alhassid, F. Gürsey, F. Iachello, “Potential scattering, transfer matrix, and group theory”, Phys. Rev. Lett., 50:12 (1985), 873–876 | DOI | MR

[35] E. I. Jafarov, S. M. Nagiyev, A. M. Jafarova, “Quantum-mechanical explicit solution for the confined harmonic oscillator model with the von Roos kinetic energy operator”, Rep. Math. Phys., 86:1 (2020), 25–37 | DOI | MR

[36] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, v. 2, Spetsialnye funktsii, Nauka, M., 1983 | MR | MR | Zbl

[37] R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteanu, “Parabolic quantum wells with the GaAs-Al$_x$Ga$_{1-x}$As system”, Phys. Rev. B, 29:6 (1984), 3740–3743 | DOI

[38] R. C. Miller, D. A. Kleinman, A. C. Gossard, “Energy-gap discontinuities and effective masses for GaAs-Al$_x$Ga$_{1-x}$As quantum wells”, Phys. Rev. B, 29:12 (1984), 7085–7087 | DOI

[39] R. C. Miller, A. C. Gossard, D. A. Kleinman, “Band offsets from two special GaAs-Al$_x$Ga$_{1-x}$As quantum well structures”, Phys. Rev. B, 32:8 (1985), 5443–5446 | DOI

[40] A. C. Gossard, R. C. Miller, W. Wiegmann, “MBE growth and energy levels of quantum wells with special shapes”, Surf. Sci., 174:1 (1986), 131–135 | DOI