Anisotropic solutions for a holographic heavy-quark model with an external magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 44-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a solution of the black hole type for a five-dimensional fully anisotropic holographic model for heavy quarks. The model is described by the Einstein action with a dilaton field and three Maxwell tensors. The additional Maxwell term is related to an external magnetic field. We consider the influence of the external magnetic field on the solution for a five-dimensional black hole.
Keywords: holography, heavy quark, magnetic field.
Mots-clés : phase transition
@article{TMF_2021_207_1_a2,
     author = {I. Ya. Aref'eva and K. Rannu and P. S. Slepov},
     title = {Anisotropic solutions for a~holographic heavy-quark model with an~external magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--57},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a2/}
}
TY  - JOUR
AU  - I. Ya. Aref'eva
AU  - K. Rannu
AU  - P. S. Slepov
TI  - Anisotropic solutions for a holographic heavy-quark model with an external magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 44
EP  - 57
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a2/
LA  - ru
ID  - TMF_2021_207_1_a2
ER  - 
%0 Journal Article
%A I. Ya. Aref'eva
%A K. Rannu
%A P. S. Slepov
%T Anisotropic solutions for a holographic heavy-quark model with an external magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 44-57
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a2/
%G ru
%F TMF_2021_207_1_a2
I. Ya. Aref'eva; K. Rannu; P. S. Slepov. Anisotropic solutions for a holographic heavy-quark model with an external magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 44-57. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a2/

[1] J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge Univ. Press, Cambridge, 2014, arXiv: 1101.0618 | DOI | Zbl

[2] I. Ya. Arefeva, “Golograficheskoe opisanie kvark-glyuonnoi plazmy, obrazuyuscheisya pri stolknoveniyakh tyazhelykh ionov”, UFN, 184:6 (2014), 569–598 | DOI | DOI

[3] O. DeWolfe, S. S. Gubser, C. Rosen, D. Teaney, “Heavy ions and string theory”, Prog. Part. Nucl. Phys., 75 (2014), 86–132, arXiv: 1304.7794 | DOI

[4] U. Gürsoy, E. Kiritsis, L. Mazzanti, F. Nitti, “Holography and thermodynamics of 5D dilaton-gravity”, JHEP, 05 (2009), 033, 111 pp., arXiv: 0812.0792 | DOI | MR

[5] U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis, F. Nitti, “Improved holographic QCD”, From Gravity to Thermal Gauge Theories: The AdS/CFT Correspondence (Adamas, Milos Island, Greece, September 21–26, 2009), Lecture Notes in Physics, 828, ed. E. Papantonopoulos, Springer, Berlin, 2011, 79–146, arXiv: 1006.5461 | DOI

[6] P. Colangelo, F. Giannuzzi, S. Nicotri, V. Tangorra, “Temperature and quark density effects on the chiral condensate: an AdS/QCD study”, Eur. Phys. J. C, 72:8 (2012), 2096, 7 pp., arXiv: 1112.4402 | DOI

[7] S. He, S.-Y. Wu, Y. Yang, P.-H. Yuan, “Phase structure in a dynamical soft-wall holographic QCD model”, JHEP, 04 (2013), 093, 22 pp., arXiv: 1301.0385 | DOI | MR

[8] Y. Yang, P. H. Yuan, “A refined holographic QCD model and QCD phase structure”, JHEP, 11 (2014), 149, 18 pp., arXiv: 1406.1865 | DOI

[9] Y. Yang, P. H. Yuan, “Confinement-deconfinement phase transition for heavy quarks in a soft wall holographic QCD model”, JHEP, 12 (2015), 161, 22 pp., arXiv: 1506.05930 | DOI | MR

[10] D. Li, M. Huang, “Chiral phase transition of QCD with $N_f=2+1$ flavors from holography”, JHEP, 02 (2017), 042, 19 pp., arXiv: 1610.09814 | DOI

[11] M.-W. Li, Y. Yang, P.-H. Yuan, “Approaching confinement structure for light quarks in a holographic soft wall QCD model”, Phys. Rev. D, 96:6 (2017), 066013, 17 pp., arXiv: 1703.09184 | DOI | MR

[12] K. B. Fadafan, R. Morad, “Jets in a strongly coupled anisotropic plasma”, Eur. Phys. J. C, 78 (2018), 16, 10 pp., arXiv: 1710.06417 | DOI

[13] I. Ya. Aref'eva, K. A. Rannu, “Holographic anisotropic background with confinement-deconfinement phase transition”, JHEP, 05 (2018), 206, 56 pp., arXiv: 1802.05652 | DOI | MR

[14] I. Ya. Aref'eva, A. A. Golubtsova, G. Policastro, “Exact holographic RG flows and the ${\rm A}_1\times {\rm A}_1$ Toda chain”, JHEP, 05 (2019), 117, 50 pp., arXiv: 1803.06764 | DOI | MR

[15] I. Aref'eva, K. Rannu, P. Slepov, “Orientation dependence of confinement-deconfinement phase transition in anisotropic media”, Phys. Lett. B, 792 (2019), 470–475, arXiv: 1808.05596 | DOI

[16] J. Chen, S. He, M. Huang, D. Li, “Critical exponents of finite temperature chiral phase transition in soft-wall AdS/QCD models”, JHEP, 01 (2019), 165, 35 pp., arXiv: 1810.07019 | DOI

[17] Z. Fang, L. Zhang, Chiral transition and meson melting with finite chemical potential in an improved soft-wall AdS/QCD model, arXiv: 1910.02269

[18] I. Ya. Aref'eva, “Holography for nonperturbative study of QFT”, Phys. Part. Nucl., 51:4 (2020), 489–496 | DOI

[19] A. Ballon-Bayona, L. A. H. Mamani, “Nonlinear realization of chiral symmetry breaking in holographic soft wall models”, Phys. Rev. D, 102:2 (2020), 026013, 29 pp., arXiv: 2002.00075 | DOI | MR

[20] A. Ballon-Bayona, H. Boschi-Filho, E. Folco Capossoli, D. M. Rodrigues, “Criticality from Einstein–Maxwell-dilaton holography at finite temperature and density”, Phys. Rev. D, 102:12 (2020), 126003, 31 pp., arXiv: 2006.08810 | DOI | MR

[21] P. Colangelo, F. De Fazio, N. Losacco, “Chaos in a $Q \overline Q$ system at finite temperature and baryon density”, Phys. Rev. D, 102:7 (2020), 074016, 12 pp., arXiv: 2007.06980 | DOI | MR

[22] I. Ya. Aref'eva, K. Rannu, P. Slepov, Holographic anisotropic model for light quarks with confinement-deconfinement phase transition, arXiv: 2009.05562

[23] I. Ya. Aref'eva, “Theoretical studies of the formation and properties of quark-gluon matter under conditions of high baryon densities attainable at the NICA experimental complex” (submitted to Phys. Part. Nucl.)

[24] P. Slepov, “A way to improve string tension dependence on temperature in holographic model” (submitted to Phys. Part. Nucl.)

[25] K. Rannu, “Holographic anisotropic model for light quarks with confinement-deconfinement phase transition” (submitted to Phys. Part. Nucl.)

[26] M.-W. Li, Y. Yang, P.-H. Yuan, Analytic study on chiral phase transition in holographic QCD, arXiv: 2009.05694

[27] H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Chiral transition in the probe approximation from an Einstein–Maxwell-dilaton gravity model, arXiv: 2010.04578

[28] M. Strickland, “Thermalization and isotropization in heavy-ion collisions”, Pramana, 84:5 (2015), 671–684 | DOI

[29] J. Adam, D. Adamová, M. M. Aggarwal et al. [ALICE Collab.], “Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV”, Phys. Rev. Lett., 116:22 (2016), 222302, 12 pp., arXiv: 1512.06104 | DOI

[30] D. Giataganas, “Probing strongly coupled anisotropic plasma”, JHEP, 07 (2012), 031, arXiv: 1202.4436 | DOI

[31] I. Ya. Aref'eva, A. A. Golubtsova, “Shock waves in Lifshitz-like spacetimes”, JHEP, 04 (2015), 011, 33 pp., arXiv: 1410.4595 | DOI | MR

[32] I. Ya. Aref'eva, A. Patrushev, P. Slepov, “Holographic entanglement entropy in anisotropic background with confinement-deconfinement phase transition”, JHEP, 07 (2020), 043, 59 pp., arXiv: 2003.05847 | DOI | MR

[33] V. Toneev, O. Rogachevsky, V. Voronyuk, “Evidence for creation of strong electromagnetic fields in relativistic heavy-ion collisions”, Eur. Phys. J. A, 52:8 (2016), 264, 3 pp., arXiv: 1604.06231 | DOI

[34] R. Rougemont, R. Critelli, J. Noronha, “Holographic calculation of the QCD crossover temperature in a magnetic field”, Phys. Rev. D, 93:4 (2015), 045013, 14 pp., arXiv: 1505.07894 | DOI

[35] D. Li, M. Huang, Y. Yang, P. H. Yuan, “Inverse magnetic catalysis in the soft-wall model of AdS/QCD”, JHEP, 02 (2017), 030, 22 pp., arXiv: 1610.04618 | DOI

[36] U. Gürsoy, I. Iatrakis, M. Järvinen, G. Nijs, “Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit”, JHEP, 03 (2017), 053, 21 pp., arXiv: 1611.06339 | DOI | MR

[37] D. Dudal, S. Mahapatra, “Confining gauge theories and holographic entanglement entropy with a magnetic field”, JHEP, 04 (2017), 031, 29 pp., arXiv: 1612.06248 | DOI

[38] U. Gursoy, M. Jarvinen, G. Nijs, “Holographic QCD in the Veneziano limit at finite magnetic field and chemical potential”, Phys. Rev. Lett., 120:24 (2018), 242002, 6 pp., arXiv: 1707.00872 | DOI

[39] U. Gürsoy, M. Järvinen, G. Nijs, J. F. Pedraza, “Inverse anisotropic catalysis in holographic QCD”, JHEP, 04 (2019), 071, 41 pp., arXiv: 1811.11724 | DOI

[40] H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, “Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model”, Phys. Lett. B, 801 (2020), 135184, 11 pp., arXiv: 1907.01852 | DOI | MR

[41] S. He, Y. Yang, P. H. Yuan, Analytic study of magnetic catalysis in holographic QCD, arXiv: 2004.01965

[42] D. M. Rodrigues, D. Li, E. F. Capossoli, H. Boschi-Filho, Finite density effects on chiral symmetry breaking in a magnetic field in $2+1$ dimensions from holography, arXiv: 2010.06762