Mots-clés : soliton solution.
@article{TMF_2021_207_1_a1,
author = {Zi-Yi Wang and Shou-Fu Tian and Xiao-Fan Zhang},
title = {Riemann{\textendash}Hilbert problem for {the~Kundu-type} nonlinear {Schr\"odinger} equation with $N$ distinct arbitrary-order poles},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--43},
year = {2021},
volume = {207},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a1/}
}
TY - JOUR AU - Zi-Yi Wang AU - Shou-Fu Tian AU - Xiao-Fan Zhang TI - Riemann–Hilbert problem for the Kundu-type nonlinear Schrödinger equation with $N$ distinct arbitrary-order poles JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 23 EP - 43 VL - 207 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a1/ LA - ru ID - TMF_2021_207_1_a1 ER -
%0 Journal Article %A Zi-Yi Wang %A Shou-Fu Tian %A Xiao-Fan Zhang %T Riemann–Hilbert problem for the Kundu-type nonlinear Schrödinger equation with $N$ distinct arbitrary-order poles %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 23-43 %V 207 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a1/ %G ru %F TMF_2021_207_1_a1
Zi-Yi Wang; Shou-Fu Tian; Xiao-Fan Zhang. Riemann–Hilbert problem for the Kundu-type nonlinear Schrödinger equation with $N$ distinct arbitrary-order poles. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 23-43. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a1/
[1] G. P. Agraval, Nelineinaya volokonnaya optika, Mir, M., 1996
[2] D. J. Benney, “A general theory for interactions between short and long waves”, Stud. Appl. Math., 56:1 (1976), 81–94 | DOI | MR
[3] T. Kakutani, K. Michihiro, “Marginal state of modulational instability – note of Benjamin–Feir instability”, J. Phys. Soc. Japan., 52:12 (1983), 4129–4137 | DOI
[4] H. Bailung, Y. Nakamura, “Observation of modulational instability in a multi-component plasma with negative ions”, J. Plasma Phys., 50:2 (1993), 231–242 | DOI
[5] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov do fotonnykh kristallov, Fizmatlit, M., 2005
[6] B. A. Malomed, D. Mihalache, F. Wise, L. Torner, “Spatiotemporal optical solitons”, J. Opt. B, 7:5 (2005), R53–R72 | DOI
[7] L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity, International Series of Monographs on Physics, 164, Oxford Univ. Press, Oxford, 2016 | Zbl
[8] G. Fanjoux, J. Michaud, H. Maillotte, T. Sylvestre, “Cascaded Raman slow light and optical spatial solitons in Kerr media”, Phys. Rev. A., 87:3 (2013), 033838, 6 pp. | DOI
[9] M. Li, J.-H. Xiao, W.-J. Liu, P. Wang, B. Qin, B. Tian, “Mixed-type vector solitons of the $N$-coupled mixed derivative nonlinear Schrödinger equations form optical fibers”, Phys. Rev. E, 87:3 (2013), 032914, 11 pp. | DOI
[10] F. G. Mertens, N. R. Quintero, A. R. Bishop, “Nonlinear Schrödinger solitons oscillate under a constant external force”, Phys. Rev. E, 87:3 (2013), 032917, 8 pp. | DOI
[11] J. T. Cole, Z. H. Musslimani, “Band gaps and lattice solitons for the higher-order nonlinear Schrödinger equation with a periodic potential”, Phys. Rev. A, 90:1 (2014), 013815, 14 pp. | DOI
[12] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR
[13] A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations”, SIGMA, 2 (2006), 078, 12 pp. | DOI | MR | Zbl
[14] X.-B. Wang, B. Han, “The Kundu-nonlinear Schrödinger equation: breathers, rogue waves and their dynamics”, J. Phys. Soc. Japan, 89:1 (2020), 014001, 5 pp. | DOI
[15] C. Zhang, C. Li, J. He, “Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation”, Math. Methods Appl. Sci., 38:11 (2015), 2411–2425 | DOI | MR
[16] X.-B. Wang, B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions”, J. Math. Anal. Appl., 487:1 (2020), 123968, 20 pp. | DOI | MR
[17] X.-W. Yan, “Riemann–Hilbert method and multi-soliton solutions of Kundu-nonlinear Schrödinger equation”, Nonlinear Dynam., 102:4 (2020), 2811–2819 | DOI
[18] M. J. Ablowitz, P. A. Clarkson, Solutions, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series, 149, Cambridge Univ. Press, Cambridge, 1991 | DOI | MR
[19] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, 5, Springer, Berlin, 1991 | DOI | MR
[20] R. Hirota, The Direct Method in Soliton Theory, Cambridge Tracts in Mathematics, 155, Cambridge Univ. Press, Cambridge, 2004 | DOI | MR
[21] G. W. Bluman, S. Kumei, Symmetries and Differential Equations, Applied Mathematical Sciences, 81, Springer, New York, 1989 | DOI | MR
[22] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–de Vries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[23] E. Noether, “Invariante Variationsprobleme”, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 2 (1918), 235–275 | Zbl
[24] C. J. Papchristou, B. K. Harrison, “A method for constructing a Lax pair for the Ernst equation”, Electron. J. Theor. Phys., 6:22 (2009), 29–40, \par http://www.ejtp.com/articles/ejtpv6i22p29.pdf
[25] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl
[26] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[27] R. Y. Chiao, E. Garmire, C. H. Townes, “Self-trapping of optical beams”, Phys. Rev. Lett., 13:15 (1965), 479–481 | DOI
[28] V. E. Zakharov, “Ustoichivost periodicheskikh voln konechnoi amplitudy na poverkhnost glubokoi zhidkosti”, PMTF, 1968, 86-94 | DOI
[29] A. Hasegawa, F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers”, Appl. Phys. Lett., 23:3 (1973), 142–144 | DOI
[30] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl
[31] G. Biondini, G. Kovac̆ic̆, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[32] X. Zhou, “The Riemann–Hilbert problem and inverse scattering”, SIAM J. Math. Anal., 20:4 (1989), 966–986 | DOI | MR
[33] M. Kashiwara, “The Riemann–Hilbert problem for holonomic systems”, Publ. Res. Inst. Math. Sci., 20:2 (1984), 319–365 | DOI | MR
[34] A. S. Fokas, V. E. Zakharov, “The dressing method and nonlocal Riemann–Hilbert problems”, J. Nonlinear Sci., 2:1 (1992), 109–134 | DOI | MR
[35] D.-S. Wang, D.-J. Zhang, J. Yang, “Integrable properties of the general coupled nonlinear Schrödinger equations”, J. Math. Phys., 51:2 (2010), 023510, 17 pp. | DOI | MR
[36] S.-F. Tian, “The mixed coupled nonlinear Schrödinger equation on the half-line via the Fokas method”, Proc. Roy. Soc. London Ser. A, 472:2195 (2016), 20160588, 22 pp. | DOI | MR
[37] X. Geng, J. Wu, “Riemann–Hilbert approach and $N$-soliton solutions for a generalized Sasa–Satsuma equation”, Wave Motion, 60 (2016), 62–72 | DOI | MR
[38] S.-F. Tian, “Initial-boundary value problems of the coupled modified Korteweg–de Vries equation on the half-line via the Fokas method”, J. Phys. A: Math. Theor., 50:39 (2017), 395204, 32 pp. | DOI | MR
[39] S.-F. Tian, “Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method”, J. Differ. Equ., 262:1 (2017), 506–558 | DOI | MR
[40] W.-X. Ma, “Riemann–Hilbert problems and $N$-soliton solutions for a coupled mKdV system”, J. Geom. Phys., 132 (2018), 45–54 | DOI | MR
[41] Y. Zhang, J. Rao, Y. Cheng, J. He, “Riemann–Hilbert method for the Wadati–Konno–Ichikawa equation: $N$ simple poles and one higher-order pole”, Phys. D, 399 (2019), 173–185 | DOI | MR
[42] W. Peng, S. Tian, X. Wang, T. Zhang, Y. Fang, “Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations”, J. Geom. Phys., 146 (2019), 103508, 9 pp. | DOI | MR
[43] J.-J. Yang, S.-F. Tian, Z.-Q. Li, Riemann–Hilbert approach to the inhomogeneous fifth-order nonlinear Schrödinger equation with non-vanishing boundary conditions, arXiv: 2001.08597
[44] P. Zhao, E. Fan, “Finite gap integration of the derivative nonlinear Schrödinger equation: a Riemann–Hilbert method”, Phys. D, 402 (2020), 132213, 31 pp. | DOI | MR
[45] C. Zhang, C. Li, J. He, “Rogue waves of the Kundu-nonlinear Schrödinger equation”, Open. J. Appl. Sci., 3 (2013), 94–98 | DOI
[46] A. S. Fokas, “A unified transform method for solving linear and certain nonlinear PDEs”, Proc. Roy. Soc. London Ser. A, 453:1962 (1997), 1411–1443 | DOI | MR