Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry
Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the Hamiltonian structures and tau symmetries, we construct a multicomponent fractional Volterra hierarchy (MFVH) as an example of a generalized integrable system. We study the Hirota bilinear equation and the Virasoro symmetry for this hierarchy. As a reduction of the MFVH from a commutative subalgebra, we construct the fractional $Z_N$-Volterra hierarchy and its Virasoro symmetry.
Keywords: multicomponent fractional Volterra hierarchy, fractional $Z_N$-Volterra hierarchy, additional symmetry, Virasoro Lie algebra.
@article{TMF_2021_207_1_a0,
     author = {Chuanzhong Li},
     title = {Multicomponent fractional {Volterra} hierarchy and its subhierarchy with {Virasoro} symmetry},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2021},
     volume = {207},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a0/}
}
TY  - JOUR
AU  - Chuanzhong Li
TI  - Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 3
EP  - 22
VL  - 207
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a0/
LA  - ru
ID  - TMF_2021_207_1_a0
ER  - 
%0 Journal Article
%A Chuanzhong Li
%T Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 3-22
%V 207
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a0/
%G ru
%F TMF_2021_207_1_a0
Chuanzhong Li. Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry. Teoretičeskaâ i matematičeskaâ fizika, Tome 207 (2021) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2021_207_1_a0/

[1] M. Toda, “Vibration of chain with nonlinear interaction”, J. Phys. Soc. Japan, 22:2 (1967), 431–436 | DOI

[2] M. Toda, Nonlinear Waves and Solitons, Mathematics and its Applications (Japanese Series), 5, Kluwer, Dordrecht, 1989 | MR

[3] K. Ueno, K. Takasaki, “Toda lattice hierarchy”, Group Representations and Systems of Differential Equations (University of Tokyo, December 20–27, 1982), Advanced Studies in Pure Mathematics, 4, ed. K. Okamoto, North-Holland, Amsterdam, 1984, 1–95 | DOI | MR | Zbl

[4] E. Witten, “Two-dimensional gravity and intersection theory on moduli space”, Surveys in Differential Geometry (Harvard University, Cambridge, MA, USA, April 27–29, 1990), eds. C. C. Hsiung, S. T. Yau, H. Blaine Lawson, Jr., Lehigh Univ., Bethlehem, PA, 1991, 243–310 | MR | Zbl

[5] B. A. Dubrovin, “Geometry of 2D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, Italy, June 14–22, 1993), Lecture Notes in Mathematics, 1620, eds. M. Francaviglia, S. Greco, Springer, Berlin, 1996, 120–348 | DOI | MR | Zbl

[6] A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov, A. Orlov, “Matrix models of two-dimensional gravity and Toda theory”, Nucl. Phys. B, 357:2–3 (1991), 565–618 | DOI | MR

[7] S. Kharchev, A. Marshakov, A. Mironov, A. Orlov, A. Zabrodin, “Matrix models among integrable theories: forced hierarchies and operator formalism”, Nucl. Phys. B, 366:3 (1991), 569–601 | DOI | MR

[8] G. Carlet, B. A. Dubrovin, Y. Zhang, “The extended Toda hierarchy”, Mosc. Math. J., 4:2 (2004), 313–332 | DOI | MR | Zbl

[9] T. E. Milanov, “Hirota quadratic equations for the extended Toda hierarchy”, Duke Math. J., 138:1 (2007), 161–178 | DOI | MR

[10] G. Carlet, “The extended bigraded Toda hierarchy”, J. Phys. A: Math. Gen., 39:30 (2006), 9411–9435, arXiv: math-ph/0604024 | DOI | MR

[11] C. Li, “Solutions of bigraded Toda hierarchy”, J. Phys. A: Math. Theor., 44:25 (2011), 255201, 29 pp. | DOI | MR

[12] T. Milanov, H. H. Tseng, “The spaces of Laurent polynomials, Gromov–Witten theory of $\mathbb{P}^1$-orbifolds, and integrable hierarchies”, J. Reine Angew. Math., 2008:622 (2008), 189–235 | DOI | MR

[13] C. Li, J. He, K. Wu, Y. Cheng, “Tau function and Hirota bilinear equations for the extended bigraded Toda hierarchy”, J. Math. Phys., 51:4 (2010), 043514, 32 pp. | DOI | MR

[14] C. Li, J. He, Y. Su, “Block type symmetry of bigraded Toda hierarchy”, J. Math. Phys., 53:1 (2012), 013517, 24 pp. | DOI | MR

[15] C. Li, J. He, “Dispersionless bigraded Toda hierarchy and its additional symmetry”, Rev. Math. Phys., 24:7 (2012), 1230003, 34 pp. | DOI | MR

[16] M. Mañas, L. Martínez Alonso, “The multicomponent 2D Toda hierarchy: dispersionless limit”, Inverse Problems, 25:11 (2009), 115020, 22 pp. | DOI | MR

[17] C. Álvarez-Fernández, U. Fidalgo Prieto, M. Mañas, “Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy”, Adv. Math., 227:4 (2011), 1451–1525 | DOI | MR

[18] C. Li, J. He, “The extended multi-component Toda hierarchy”, Math. Phys. Anal. Geom., 17:3–4 (2014), 377–407 | DOI | MR

[19] I. A. B. Strachan, D. F. Zuo, “Integrability of the Frobenius algebra-valued Kadomtsev–Petviashvili hierarchy”, J. Math. Phys., 56:11 (2015), 113509, 13 pp., arXiv: 1511.05245 | DOI | MR

[20] Chuan-Chzhun Li, Tszin-Sun Khe, “O rasshirennoi ierarkhii $Z_N$-Tody”, TMF, 185:2 (2015), 289–312, arXiv: 1403.0684 | DOI | DOI | MR

[21] A. Y. Orlov, E. I. Shul'man, “Additional symmetries for integrable and conformal algebra representation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR

[22] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 12, World Sci., Singapore, 1991 | DOI | MR

[23] L. A. Dickey, “Additional symmetries of the Zakharov–Shabat hierarchy, string equation and isomonodromy”, Lett. Math. Phys., 44:1 (1998), 53–65 | DOI | MR

[24] A. Yu. Orlov, “Vertex operator, $\bar{\partial}$-problem, symmetries, variational identities and Hamiltonian formalism for $2+1$ integrable systems”, Plasma Theory and Nonlinear and Turbulent Processes in Physics (Kiev, USSR, 13–25 April, 1987), ed. V. G. Bar'yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, V. E. Zakharov, World Sci., Singapore, 1988, 116–134 | MR | Zbl

[25] V. G. Kac, J. W. van de Leur, “The $n$-component KP hierarchy and representation theory”, J. Math. Phys., 44:8 (2003), 3245–3293 | DOI | MR

[26] B. Dubrovin, Y. Zhang, “Virasoro symmetries of the extended Toda hierarchy”, Commun. Math. Phys., 250:1 (2004), 161–193, arXiv: math/0308152 | DOI | MR

[27] S.-Q. Liu, Y. Zhang, C. Zhou, “Fractional Volterra hierarchy”, Lett. Math. Phys., 108:2 (2018), 261–283 | DOI | MR

[28] S.-Q. Liu, D. Yang, Y. Zhang, C. Zhou, The Hodge-FVH correspondence, arXiv: 1906.06860

[29] Chuan-Chzhun Li, “Konechnomernye tau-funktsii ierarkhii universalnykh kharakterov”, TMF, 206:3 (2021), 368–383 | DOI | MR