Using methods of classical and quantum physics in bioenergy
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 448-452 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the construction of asymptotic solutions of linear equations related to equations of classical mechanics: the Hamilton–Jacobi equation and the transport equation. We show that these methods and also the theory of the mechanics of an infinitely narrow beam as a whole can be applied to some objects in bioenergy if the thin organic objects of the type of wood splinters, straw, pellets, and so on are approximated by infinitely narrow beams.
Keywords: complex WKB method, classical mechanics, quantum physics, Hamilton–Jacobi equation, wave equation, small parameter, bioenergy, subtropical mathematics.
Mots-clés : transport equation
@article{TMF_2021_206_3_a9,
     author = {V. P. Maslov},
     title = {Using methods of classical and quantum physics in bioenergy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {448--452},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Using methods of classical and quantum physics in bioenergy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 448
EP  - 452
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a9/
LA  - ru
ID  - TMF_2021_206_3_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Using methods of classical and quantum physics in bioenergy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 448-452
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a9/
%G ru
%F TMF_2021_206_3_a9
V. P. Maslov. Using methods of classical and quantum physics in bioenergy. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 448-452. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a9/

[1] V. P. Maslov, Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977 | DOI | MR | MR | Zbl

[2] V. P. Maslov, “Motivation and essence of the term “Tropical mathematics””, Russian J. Math. Phys., 27:4 (2020), 478–483 | DOI

[3] V. P. Maslov, “Submathematics and tropical mathematics”, Math. Notes, 109:2 (2021), 241–246 | DOI

[4] V. P. Maslov, Operatornye metody, Mir, M., 1982 | MR | MR | Zbl

[5] V. P. Maslov, V. N. Kolokoltsov, Idempotentnyi analiz i ego primenenie v optimalnom upravlenii, Fizmatlit, M., 1994 | MR

[6] V. V. Belov, S. Yu. Dobrokhotov, “Kvaziklassicheskie asimptotiki Maslova s kompleksnymi fazami. I. Obschii podkhod”, TMF, 92:2 (1992), 215–254 | DOI | MR

[7] V. V. Belov, S. Yu. Dobrokhotov, S. O. Sinitsyn, “Asimptoticheskie resheniya uravneniya Shredingera v tonkikh trubkakh”, Tr. IMM UrO RAN, 9:1 (2003), 15–25 | MR | Zbl

[8] V. V. Belov, S. Yu. Dobrokhotov, V. P. Maslov, T. Ya. Tudorovskii, “Obobschennyi adiabaticheskii printsip dlya opisaniya dinamiki elektrona v iskrivlennykh nanostrukturakh”, UFN, 175:9 (2005), 1004–1010 | DOI | DOI

[9] I. Bryuning, S. Yu. Dobrokhotov, R. V. Nekrasov, A. I. Shafarevich, “Rasprostranenie gaussovykh volnovykh paketov v kvantovykh tonkikh periodicheskikh volnovodakh s nelokalnoi nelineinostyu”, TMF, 155:2 (2008), 215–235 | DOI | DOI | MR | Zbl