Holliday junctions in the Blume–Capel model of DNA
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 439-447 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We regard a DNA molecule as a configuration of the Blume–Capel model on paths in a Cayley tree. We study translation-invariant Gibbs measures (TIGMs) of the model on the Cayley tree of order two and show that there is a critical temperature $T_\mathrm{c}$ such that there exists a unique TIGM if the temperature $T>T_\mathrm{c}$, there are two TIGMs if $T=T_\mathrm{c}$, and there are three TIGMs if $T. Each such measure describes a phase of the set of DNA molecules. We use these measures to study probability distributions of Holliday junctions in DNA molecules.
Keywords: Cayley tree, Blume–Capel model, Gibbs measure, Holliday junction.
@article{TMF_2021_206_3_a8,
     author = {N. M. Khatamov},
     title = {Holliday junctions in {the~Blume{\textendash}Capel} model of {DNA}},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {439--447},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a8/}
}
TY  - JOUR
AU  - N. M. Khatamov
TI  - Holliday junctions in the Blume–Capel model of DNA
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 439
EP  - 447
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a8/
LA  - ru
ID  - TMF_2021_206_3_a8
ER  - 
%0 Journal Article
%A N. M. Khatamov
%T Holliday junctions in the Blume–Capel model of DNA
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 439-447
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a8/
%G ru
%F TMF_2021_206_3_a8
N. M. Khatamov. Holliday junctions in the Blume–Capel model of DNA. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 439-447. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a8/

[1] B. Alberts, A. Dzhonson, D. Lyuis, M. Reff, K. Roberts, P. Uolter, Molekulyarnaya biologiya kletki, NITs “Regulyarnaya i khaotichnaya dinamika”, M.–Izhevsk, 2013

[2] R. Holliday, “A mechanism for gene conversion in fungi”, Genet. Res., 5:2 (1964), 282–304 | DOI

[3] U. A. Rozikov, “Tree-hierarchy of DNA and distribution of Holliday junctions”, J. Math. Biol., 75:6–7 (2017), 1715–1733 | DOI | MR

[4] U. A. Rozikov, “Holliday junctions for the Potts model of DNA”, Algebra, Complex Analysis, and Pluripotential Theory (Urgench, Uzbekistan, August 8–12, 2017), Springer Proceedings in Mathematics and Statistics, 264, eds. Z. Ibragimov, N. Levenberg, U. Rozikov, A. Sadullaev, Springer, Cham, 2018, 151–165 | DOI | MR | Zbl

[5] E. N. Cirillo, E. Olivieri, “Metastability and nucleation for the Blume–Capel model. Different mechanisms of transition”, J. Statist. Phys., 83:3–4 (1996), 473–554 | DOI | MR

[6] N. M. Khatamov, R.M. Khakimov, “Translation-invariant Gibbs measures for the Blume– Kapel model on a Cayley tree”, Zhurn. matem. fiz., anal., geom.,, 15:2 (2019), 239–255 | MR

[7] N. M. Khatamov, “Translation-invariant extreme Gibbs measures for the Blume–Capel model with a wand on a Cayley tree”, Ukr. matem. zhurn., 72:4 (2020), 540–556 | DOI | DOI

[8] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR

[9] U. A. Rozikov, F. T. Ishankulov, “Description of periodic $p$-harmonic functions on Cayley trees”, Nonlinear Differ. Equ. Appl., 17:2 (2010), 153–160 | DOI | MR

[10] D. Swigon, “The mathematics of DNA structure, mechanics, and dynamics”, Mathematics of DNA Structure, Function and Interactions (IMA, September 16–21, 2007), The IMA Volumes in Mathematics and its Applications, 150, eds. C. J. Benham, S. Harvey, W. K. Olson, De Witt Sumners, D. Swigon, Springer, New York, 2009, 293–320 | DOI | MR

[11] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl