Keywords: localization, weak interaction, continuity.
@article{TMF_2021_206_3_a7,
author = {T. Ekanga},
title = {Localization in multiparticle {Anderson} models with weak interaction},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {410--438},
year = {2021},
volume = {206},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/}
}
T. Ekanga. Localization in multiparticle Anderson models with weak interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 410-438. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/
[1] M. Aizenmann, S. Warzel, “Localization bounds for multi-particle systems”, Commun. Math. Phys., 290:3 (2009), 903–934, arXiv: 0809.3436 | DOI | MR
[2] M. Aizenmann, S. Warzel, “Complete dynamical localization in disordered quantum multi-particle systems”, XVIth International congress on Mathematical Physics (Prague, Czech Republic, 3–8 August, 2009), ed. P. Exner, World Sci., Hackensack, NJ, 2010, 556–565 | DOI | MR
[3] V. Chulaevsky, Y. Suhov, “Multi-particle Anderson localization: induction on the number of particles”, Math. Phys. Anal. Geom., 12:2 (2009), 117–139 | DOI | MR
[4] T. Ekanga, “On two-particle Anderson localization at low energies”, C. R. Acad. Sci. Paris Ser. I, 349:3–4 (2011), 167–170 | DOI | MR
[5] T. Ekanga, “Multi-particle localization for weakly interacting Anderson tight-binding models”, J. Math. Phys., 58:4 (2016), 043503, 22 pp. | DOI | MR
[6] M. Fauser, S. Warzel, “Multiparticle localization for disordered systems on continuous space via the fractional moment method”, Rev. Math. Phys., 27:4 (2015), 1550010, 42 pp. | DOI | MR
[7] A. Klein, S. T. Nguyen, “The boostrap multiscale analysis for multi-particle Anderson model”, J. Stat. Phys., 151:6 (2013), 938–973, arXiv: 1212.5638 | DOI | MR
[8] A. Boutet de Monvel, V. Chulaevsky, P. Stollmann, Y. Suhov, “Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential”, J. Stat. Phys., 138:4–5 (2010), 553–566 | DOI | MR
[9] V. Chulaevsky, Y. Suhov, “Wegner bounds for a two particle tight-binding model”, Commun. Math. Phys., 283:2 (2008), 479–489, arXiv: 0708.2056 | DOI | MR
[10] R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990 | DOI | MR
[11] J. Fröhlich, F. Martinelli, E. Scoppola, T. Spencer, “Constructive proof of localization in the Anderson tight binding model”, Commun. Math. Phys., 101:1 (1985), 21–46 | DOI | MR
[12] F. Germinet, S. De Bièvre, “Dynamical localization for discrete and continuous random Schrödinger operators”, Commun. Math. Phys., 194:2 (1998), 323–341 | DOI | MR
[13] W. Kirsch, An Invitation to Random Schrödinger Operators, Panorama et Synthèses, 25, Société Mathématique de France, Marseilles, 2008 | MR
[14] V. Chulaevsky, Y. Suhov, “Eigenfunctions in a two-particle Anderson tight binding model”, Commun. Math. Phys., 289:2 (2009), 701–723, arXiv: 0810.2190 | DOI | MR
[15] T. Ekanga, “Localization in the multi-particle tight-binding Anderson model at low energy”, Rev. Math. Phys., 32:03 (2020), 2050009, 35 pp. | DOI | MR
[16] P. Stollmann, Caught by Disorder. Bounded States in Random Media, Progress in Mathematical Physics, 20, Birkhäuser, Boston, MA, 2001 | DOI | MR
[17] R. Carmona, A. Klein, F. Martinelli, “Anderson localization for Bernoulli and other singular potentials”, Commun. Math. Phys., 108:1 (1987), 41–66 | DOI | MR
[18] D. Damanik, R. Sims, G. Stolz, “Localization for one-dimensional continuum Bernoulli–Anderson models”, Duke Math. J., 114:1 (2002), 59–100 | DOI | MR
[19] V. Chulaevsky, A. Boutet de Monvel, Y. Suhov, “Dynamical localization for multi- particle models with an alloy-type external random potentials”, Nonlinearity, 24:5 (2011), 1451–1472 | DOI | MR
[20] F. Germinet, A. KLein, “Operator kernel estimates for functions of generalized Schrödinger operators”, Proc. Amer. Math. Soc., 131:3 (2003), 911–920 | DOI | MR
[21] H. von Dreifus, A. Klein, “A new proof of localization in the Anderson tight-binding model”, Commun. Math. Phys., 124:2 (1989), 285–299 | DOI | MR
[22] D. Damanik, P. Stollmann, “Multi-scale analysis implies strong dynamical localization”, Geom. Funct. Anal., 11:1 (2001), 11–29 | DOI | MR