Localization in multiparticle Anderson models with weak interaction
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 410-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove that spectral and strong dynamical localization occurs in the one-dimensional multiparticle Anderson model with weak interaction in the continuous configuration space. To obtain these results, the interaction amplitude must be sufficiently small. The general strategy relies on an estimate in the framework of multiscale analysis. In fact, we prove that the multiscale analysis estimates for the single-particle model are unchanged in passing to multiparticle systems if the interparticle interaction is sufficiently small. The only condition imposed on the probability distribution of the external potential, which is a random field of independent identically distributed random quantities, is that it must be logarithmically continuous in the Hölder sense.
Mots-clés : multiparticle system
Keywords: localization, weak interaction, continuity.
@article{TMF_2021_206_3_a7,
     author = {T. Ekanga},
     title = {Localization in multiparticle {Anderson} models with weak interaction},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {410--438},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/}
}
TY  - JOUR
AU  - T. Ekanga
TI  - Localization in multiparticle Anderson models with weak interaction
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 410
EP  - 438
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/
LA  - ru
ID  - TMF_2021_206_3_a7
ER  - 
%0 Journal Article
%A T. Ekanga
%T Localization in multiparticle Anderson models with weak interaction
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 410-438
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/
%G ru
%F TMF_2021_206_3_a7
T. Ekanga. Localization in multiparticle Anderson models with weak interaction. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 410-438. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a7/

[1] M. Aizenmann, S. Warzel, “Localization bounds for multi-particle systems”, Commun. Math. Phys., 290:3 (2009), 903–934, arXiv: 0809.3436 | DOI | MR

[2] M. Aizenmann, S. Warzel, “Complete dynamical localization in disordered quantum multi-particle systems”, XVIth International congress on Mathematical Physics (Prague, Czech Republic, 3–8 August, 2009), ed. P. Exner, World Sci., Hackensack, NJ, 2010, 556–565 | DOI | MR

[3] V. Chulaevsky, Y. Suhov, “Multi-particle Anderson localization: induction on the number of particles”, Math. Phys. Anal. Geom., 12:2 (2009), 117–139 | DOI | MR

[4] T. Ekanga, “On two-particle Anderson localization at low energies”, C. R. Acad. Sci. Paris Ser. I, 349:3–4 (2011), 167–170 | DOI | MR

[5] T. Ekanga, “Multi-particle localization for weakly interacting Anderson tight-binding models”, J. Math. Phys., 58:4 (2016), 043503, 22 pp. | DOI | MR

[6] M. Fauser, S. Warzel, “Multiparticle localization for disordered systems on continuous space via the fractional moment method”, Rev. Math. Phys., 27:4 (2015), 1550010, 42 pp. | DOI | MR

[7] A. Klein, S. T. Nguyen, “The boostrap multiscale analysis for multi-particle Anderson model”, J. Stat. Phys., 151:6 (2013), 938–973, arXiv: 1212.5638 | DOI | MR

[8] A. Boutet de Monvel, V. Chulaevsky, P. Stollmann, Y. Suhov, “Wegner-type bounds for a multi-particle continuous Anderson model with an alloy-type external potential”, J. Stat. Phys., 138:4–5 (2010), 553–566 | DOI | MR

[9] V. Chulaevsky, Y. Suhov, “Wegner bounds for a two particle tight-binding model”, Commun. Math. Phys., 283:2 (2008), 479–489, arXiv: 0708.2056 | DOI | MR

[10] R. Carmona, J. Lacroix, Spectral Theory of Random Schrödinger Operators, Birkhäuser, Boston, 1990 | DOI | MR

[11] J. Fröhlich, F. Martinelli, E. Scoppola, T. Spencer, “Constructive proof of localization in the Anderson tight binding model”, Commun. Math. Phys., 101:1 (1985), 21–46 | DOI | MR

[12] F. Germinet, S. De Bièvre, “Dynamical localization for discrete and continuous random Schrödinger operators”, Commun. Math. Phys., 194:2 (1998), 323–341 | DOI | MR

[13] W. Kirsch, An Invitation to Random Schrödinger Operators, Panorama et Synthèses, 25, Société Mathématique de France, Marseilles, 2008 | MR

[14] V. Chulaevsky, Y. Suhov, “Eigenfunctions in a two-particle Anderson tight binding model”, Commun. Math. Phys., 289:2 (2009), 701–723, arXiv: 0810.2190 | DOI | MR

[15] T. Ekanga, “Localization in the multi-particle tight-binding Anderson model at low energy”, Rev. Math. Phys., 32:03 (2020), 2050009, 35 pp. | DOI | MR

[16] P. Stollmann, Caught by Disorder. Bounded States in Random Media, Progress in Mathematical Physics, 20, Birkhäuser, Boston, MA, 2001 | DOI | MR

[17] R. Carmona, A. Klein, F. Martinelli, “Anderson localization for Bernoulli and other singular potentials”, Commun. Math. Phys., 108:1 (1987), 41–66 | DOI | MR

[18] D. Damanik, R. Sims, G. Stolz, “Localization for one-dimensional continuum Bernoulli–Anderson models”, Duke Math. J., 114:1 (2002), 59–100 | DOI | MR

[19] V. Chulaevsky, A. Boutet de Monvel, Y. Suhov, “Dynamical localization for multi- particle models with an alloy-type external random potentials”, Nonlinearity, 24:5 (2011), 1451–1472 | DOI | MR

[20] F. Germinet, A. KLein, “Operator kernel estimates for functions of generalized Schrödinger operators”, Proc. Amer. Math. Soc., 131:3 (2003), 911–920 | DOI | MR

[21] H. von Dreifus, A. Klein, “A new proof of localization in the Anderson tight-binding model”, Commun. Math. Phys., 124:2 (1989), 285–299 | DOI | MR

[22] D. Damanik, P. Stollmann, “Multi-scale analysis implies strong dynamical localization”, Geom. Funct. Anal., 11:1 (2001), 11–29 | DOI | MR