Keywords: universal character hierarchy, finite Grassmannian, KP hierarchy
@article{TMF_2021_206_3_a4,
author = {Chuanzhong Li},
title = {Finite-dimensional tau functions of the~universal character hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {368--383},
year = {2021},
volume = {206},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/}
}
Chuanzhong Li. Finite-dimensional tau functions of the universal character hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 368-383. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/
[1] B. B. Kadomtsev, V. I. Petviashvili, “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl
[2] Y. Kodama, “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43:43 (2010), 434004, 54 pp. | DOI | MR
[3] Y. Kodama, L. Williams, “KP solitons, total positivity, and cluster algebras”, Proc. Natl. Acad. Sci. USA, 108:22 (2011), 8984–8989, arXiv: 1105.4170 | DOI | MR | Zbl
[4] Y. Kodama, L. Williams, “The Deodhar decomposition for the Grassmannian and the regularity of KP solitons”, Adv. Math., 244 (2013), 979–1032 | DOI | MR
[5] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl
[6] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science, North-Holland Mathematics Studies, 81, eds. H. Fujita, P. D. Lax, G. Strang, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl
[7] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR
[8] M. M. Gekhtman, A. Kasman, “Integriruemye sistemy i usloviya odnorangovosti dlya pryamougolnykh matrits”, TMF, 133:2 (2002), 211–217 | DOI | DOI | MR
[9] M. Gekhtman, A. Kasman, “Tau functions, Grassmannians and rank one conditions”, J. Comput. Appl. Math., 202:1 (2007), 80–87 | DOI | MR
[10] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR
[11] T. Tsuda, “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23:5 (2012), 1250010, 59 pp. | DOI | MR
[12] T. Tsuda, “Universal characters, integrable chains and the Painlevé equations”, Adv. Math., 197:2 (2005), 587–606 | DOI | MR
[13] T. Tsuda, “Universal characters and $q$-Painlevé systems”, Commun. Math. Phys., 260:1 (2005), 59–73 | DOI | MR
[14] T. Tsuda, “Universal character and $q$-difference Painlevé equations”, Math. Ann., 345:2 (2009), 395–415 | DOI | MR
[15] N. Wang, C. Li, “Universal character, phase model and topological strings on $\mathbb{C}^3$”, Eur. Phys. J. C, 79:11 (2019), 953, 9 pp., arXiv: 1711.05548 | DOI
[16] Y. Kodama, Y. Xie, Space curves and solitons of the KP hierarchy: I. The $l$-th generalized KdV hierarchy, arXiv: 1912.06768
[17] F. Balogh, T. Fonseca, J. Harnad, “Finite dimensional Kadomtsev–Petviashvili $\tau$-functions. I. Finite Grassmannians”, J. Math. Phys., 55:8 (2014), 083517, 32 pp., arXiv: 1403.5835 | DOI | MR