Finite-dimensional tau functions of the universal character hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 368-383 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the so-called Schubert decomposition, we present a finite-dimensional twisted description of the tau functions of the universal character (UC) hierarchy using Grassmannians. Moreover, from the standpoint of the relation between the UC and Kadomtsev–Petviashvili hierarchies, we study the expansion of this tau function in terms of the action of Abelian groups on finite-dimensional Grassmannians. We use the Gekhtman–Kasman determinant formula involving exponentials of finite-dimensional matrices, which naturally leads to the structure of two finite Grassmannians. Using the Gekhtman–Kasman-type formula, we consider some concrete examples: rational, soliton, and mixed solutions.
Mots-clés : Schubert decomposition, Gekhtman–Kasman formula.
Keywords: universal character hierarchy, finite Grassmannian, KP hierarchy
@article{TMF_2021_206_3_a4,
     author = {Chuanzhong Li},
     title = {Finite-dimensional tau functions of the~universal character hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {368--383},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/}
}
TY  - JOUR
AU  - Chuanzhong Li
TI  - Finite-dimensional tau functions of the universal character hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 368
EP  - 383
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/
LA  - ru
ID  - TMF_2021_206_3_a4
ER  - 
%0 Journal Article
%A Chuanzhong Li
%T Finite-dimensional tau functions of the universal character hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 368-383
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/
%G ru
%F TMF_2021_206_3_a4
Chuanzhong Li. Finite-dimensional tau functions of the universal character hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 368-383. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a4/

[1] B. B. Kadomtsev, V. I. Petviashvili, “Ob ustoichivosti uedinennykh voln v slabo dispergiruyuschikh sredakh”, Dokl. AN SSSR, 192:4 (1970), 753–756 | Zbl

[2] Y. Kodama, “KP solitons in shallow water”, J. Phys. A: Math. Theor., 43:43 (2010), 434004, 54 pp. | DOI | MR

[3] Y. Kodama, L. Williams, “KP solitons, total positivity, and cluster algebras”, Proc. Natl. Acad. Sci. USA, 108:22 (2011), 8984–8989, arXiv: 1105.4170 | DOI | MR | Zbl

[4] Y. Kodama, L. Williams, “The Deodhar decomposition for the Grassmannian and the regularity of KP solitons”, Adv. Math., 244 (2013), 979–1032 | DOI | MR

[5] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds”, Random Systems and Dynamical Systems (Kyoto, January 7–9, 1981), RIMS Kôkyûroku, 439, Kyoto Univ., Kyoto, 1981, 30–46 | MR | Zbl

[6] M. Sato, “Soliton equations as dynamical systems on infinite dimensional Grassmann manifold”, Nonlinear Partial Differential Equations in Applied Science, North-Holland Mathematics Studies, 81, eds. H. Fujita, P. D. Lax, G. Strang, North-Holland, Amsterdam, 1983, 259–271 | DOI | MR | Zbl

[7] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Inst. Hautes Études Sci. Publ. Math., 61 (1985), 5–65 | DOI | MR

[8] M. M. Gekhtman, A. Kasman, “Integriruemye sistemy i usloviya odnorangovosti dlya pryamougolnykh matrits”, TMF, 133:2 (2002), 211–217 | DOI | DOI | MR

[9] M. Gekhtman, A. Kasman, “Tau functions, Grassmannians and rank one conditions”, J. Comput. Appl. Math., 202:1 (2007), 80–87 | DOI | MR

[10] T. Tsuda, “Universal characters and an extension of the KP hierarchy”, Commun. Math. Phys., 248:3 (2004), 501–526 | DOI | MR

[11] T. Tsuda, “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23:5 (2012), 1250010, 59 pp. | DOI | MR

[12] T. Tsuda, “Universal characters, integrable chains and the Painlevé equations”, Adv. Math., 197:2 (2005), 587–606 | DOI | MR

[13] T. Tsuda, “Universal characters and $q$-Painlevé systems”, Commun. Math. Phys., 260:1 (2005), 59–73 | DOI | MR

[14] T. Tsuda, “Universal character and $q$-difference Painlevé equations”, Math. Ann., 345:2 (2009), 395–415 | DOI | MR

[15] N. Wang, C. Li, “Universal character, phase model and topological strings on $\mathbb{C}^3$”, Eur. Phys. J. C, 79:11 (2019), 953, 9 pp., arXiv: 1711.05548 | DOI

[16] Y. Kodama, Y. Xie, Space curves and solitons of the KP hierarchy: I. The $l$-th generalized KdV hierarchy, arXiv: 1912.06768

[17] F. Balogh, T. Fonseca, J. Harnad, “Finite dimensional Kadomtsev–Petviashvili $\tau$-functions. I. Finite Grassmannians”, J. Math. Phys., 55:8 (2014), 083517, 32 pp., arXiv: 1403.5835 | DOI | MR