Properties of solutions of two second-order differential equations with the~Painlev\'e property
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 361-367
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a Hamiltonian system equivalent to the Painlevé II equation with respect to one component and to the Painlevé XXXIV equation with respect to another. We obtain two Bäcklund transformations (direct and inverse) of solutions of the Painlevé XXXIV equation. Based on this, we obtain a nonlinear functional relation for solutions of the Painlevé XXXIV equation with different values of its parameter. We obtain a second-degree second-order nonlinear differential equation with an arbitrary analytic function $F(t)$ and an arbitrary parameter $\gamma$ that is a Painlevé-type equation, which for $\gamma=1$ is the canonical equation XXVII in the Ince list in the case $m=2$. We obtain a Painlevé-type equation that reduces to the abovementioned equation for $F(t)=-t$ and $\gamma=0$. We show that the direct and inverse Bäcklund transformations coincide with the pair of Bäcklund transformations for the Painlevé XXXIV equation.
Keywords:
Hamiltonian system, Painlevé equation, Painlevé property, direct Bäcklund transformation, inverse Bäcklund transformation.
@article{TMF_2021_206_3_a3,
author = {V. V. Tsegel'nik},
title = {Properties of solutions of two second-order differential equations with {the~Painlev\'e} property},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {361--367},
publisher = {mathdoc},
volume = {206},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/}
}
TY - JOUR AU - V. V. Tsegel'nik TI - Properties of solutions of two second-order differential equations with the~Painlev\'e property JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 361 EP - 367 VL - 206 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/ LA - ru ID - TMF_2021_206_3_a3 ER -
%0 Journal Article %A V. V. Tsegel'nik %T Properties of solutions of two second-order differential equations with the~Painlev\'e property %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 361-367 %V 206 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/ %G ru %F TMF_2021_206_3_a3
V. V. Tsegel'nik. Properties of solutions of two second-order differential equations with the~Painlev\'e property. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 361-367. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/