Mots-clés : Painlevé equation, Painlevé property
@article{TMF_2021_206_3_a3,
author = {V. V. Tsegel'nik},
title = {Properties of solutions of two second-order differential equations with {the~Painlev\'e} property},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {361--367},
year = {2021},
volume = {206},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/}
}
TY - JOUR AU - V. V. Tsegel'nik TI - Properties of solutions of two second-order differential equations with the Painlevé property JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 361 EP - 367 VL - 206 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/ LA - ru ID - TMF_2021_206_3_a3 ER -
V. V. Tsegel'nik. Properties of solutions of two second-order differential equations with the Painlevé property. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 361-367. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/
[1] R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen”, Math. Ann., 63:3 (1907), 301–321 | DOI | MR
[2] R. Garnier, “Sur les équationes différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équationes nouvelles d'ordre supérieur dont l'intégrale a ses points critique fixes”, Ann. Sci. École Norm Super. Ser. 3, 29 (1912), 1–126 | DOI | MR
[3] A. R. Its, V. Yu. Novokshenov, “The isomonodromy deformation method in the theory of Painlevé equations”, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR
[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, RKhD, M.–Izhevsk, 2005 | DOI | MR
[5] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Commun. Math. Phys., 207:3 (1998), 665–685 | DOI | MR
[6] K. Okamoto, “Polynomial Hamiltonians associated with Painlevé equations. II”, Proc. Japan. Acad. Ser. A, 56:8 (1980), 367–371 | DOI | MR
[7] A. N. W. Hone, F. Zullo, “A Hirota bilinear equation for Painvelé transcendents P$_{IV}$, P$_{II}$ and P$_{I}$”, Random Matrices: Theory Appl., 7:4 (2018), 1840001, 15 pp., arXiv: 1706.02341 | DOI | MR
[8] B. I. Suleimanov, “Gamiltonovost uravnenii Penleve i metod izomonodromnykh deformatsii”, Differents. uravneniya, 30:5 (1994), 791–796 | MR
[9] B. I. Suleimanov, “ ‘Kvantovaniya’ vtorogo uravneniya Penleve i problema ekvivalentnosti ego L–A par”, TMF, 156:3 (2008), 364–377 | DOI | DOI | MR | Zbl
[10] A. S. Fokas, D. Yang, “On a novel class of integrable ODEs related to the Painlevé equations”, Internat. J. Bifur. Chaos, 22:9 (2012), 1250211, 10 pp. | DOI | MR
[11] E. Ains, Obyknovennye differentsialnye uravneniya, Faktorial Press, M., 2005 | MR | Zbl
[12] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a point critiques fixes”, Acta Math., 33:1 (1909), 1–55 | DOI | MR
[13] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | Zbl
[14] A. I. Yablonskii, “O vychetakh polyusov reshenii vtorogo uravneniya Penleve”, Dokl. AN BSSR, 4:2 (1960), 47–50
[15] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izdatelskii tsentr BGU, Minsk, 2007
[16] V. V. Tsegelnik, “Gamiltoniany, assotsiirovannye s shestym uravneniem Penleve”, TMF, 151:1 (2007), 54–65 | DOI | DOI | MR | Zbl
[17] V. V. Tsegelnik, “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, TMF, 162:1 (2010), 69–74 | DOI | DOI | MR | Zbl
[18] B. I. Suleimanov, “ ‘Kvantovaniya’ vysshikh gamiltonovykh analogov uravnenii I i II s dvumya stepenyami svobody”, Funkts. analiz i ego prilozh., 48:3 (2014), 52–62 | DOI | DOI | MR | Zbl