Properties of solutions of two second-order differential equations with the Painlevé property
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 361-367
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Hamiltonian system equivalent to the Painlevé II equation with respect to one component and to the Painlevé XXXIV equation with respect to another. We obtain two Bäcklund transformations (direct and inverse) of solutions of the Painlevé XXXIV equation. Based on this, we obtain a nonlinear functional relation for solutions of the Painlevé XXXIV equation with different values of its parameter. We obtain a second-degree second-order nonlinear differential equation with an arbitrary analytic function $F(t)$ and an arbitrary parameter $\gamma$ that is a Painlevé-type equation, which for $\gamma=1$ is the canonical equation XXVII in the Ince list in the case $m=2$. We obtain a Painlevé-type equation that reduces to the abovementioned equation for $F(t)=-t$ and $\gamma=0$. We show that the direct and inverse Bäcklund transformations coincide with the pair of Bäcklund transformations for the Painlevé XXXIV equation.
Keywords: Hamiltonian system, direct Bäcklund transformation, inverse Bäcklund transformation.
Mots-clés : Painlevé equation, Painlevé property
@article{TMF_2021_206_3_a3,
     author = {V. V. Tsegel'nik},
     title = {Properties of solutions of two second-order differential equations with {the~Painlev\'e} property},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {361--367},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/}
}
TY  - JOUR
AU  - V. V. Tsegel'nik
TI  - Properties of solutions of two second-order differential equations with the Painlevé property
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 361
EP  - 367
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/
LA  - ru
ID  - TMF_2021_206_3_a3
ER  - 
%0 Journal Article
%A V. V. Tsegel'nik
%T Properties of solutions of two second-order differential equations with the Painlevé property
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 361-367
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/
%G ru
%F TMF_2021_206_3_a3
V. V. Tsegel'nik. Properties of solutions of two second-order differential equations with the Painlevé property. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 361-367. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a3/

[1] R. Fuchs, “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen”, Math. Ann., 63:3 (1907), 301–321 | DOI | MR

[2] R. Garnier, “Sur les équationes différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équationes nouvelles d'ordre supérieur dont l'intégrale a ses points critique fixes”, Ann. Sci. École Norm Super. Ser. 3, 29 (1912), 1–126 | DOI | MR

[3] A. R. Its, V. Yu. Novokshenov, “The isomonodromy deformation method in the theory of Painlevé equations”, The Isomonodromic Deformation Method in the Theory of Painlevé Equations, Lecture Notes in Mathematics, 1191, Springer, Berlin, 1986 | DOI | MR

[4] A. R. Its, A. A. Kapaev, V. Yu. Novokshenov, A. S. Fokas, Transtsendenty Penleve. Metod zadachi Rimana, RKhD, M.–Izhevsk, 2005 | DOI | MR

[5] C. A. Tracy, H. Widom, “Random unitary matrices, permutations and Painlevé”, Commun. Math. Phys., 207:3 (1998), 665–685 | DOI | MR

[6] K. Okamoto, “Polynomial Hamiltonians associated with Painlevé equations. II”, Proc. Japan. Acad. Ser. A, 56:8 (1980), 367–371 | DOI | MR

[7] A. N. W. Hone, F. Zullo, “A Hirota bilinear equation for Painvelé transcendents P$_{IV}$, P$_{II}$ and P$_{I}$”, Random Matrices: Theory Appl., 7:4 (2018), 1840001, 15 pp., arXiv: 1706.02341 | DOI | MR

[8] B. I. Suleimanov, “Gamiltonovost uravnenii Penleve i metod izomonodromnykh deformatsii”, Differents. uravneniya, 30:5 (1994), 791–796 | MR

[9] B. I. Suleimanov, “ ‘Kvantovaniya’ vtorogo uravneniya Penleve i problema ekvivalentnosti ego L–A par”, TMF, 156:3 (2008), 364–377 | DOI | DOI | MR | Zbl

[10] A. S. Fokas, D. Yang, “On a novel class of integrable ODEs related to the Painlevé equations”, Internat. J. Bifur. Chaos, 22:9 (2012), 1250211, 10 pp. | DOI | MR

[11] E. Ains, Obyknovennye differentsialnye uravneniya, Faktorial Press, M., 2005 | MR | Zbl

[12] B. Gambier, “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a point critiques fixes”, Acta Math., 33:1 (1909), 1–55 | DOI | MR

[13] E. Kamke, Spravochnik po obyknovennym differentsialnym uravneniyam, Nauka, M., 1976 | MR | Zbl

[14] A. I. Yablonskii, “O vychetakh polyusov reshenii vtorogo uravneniya Penleve”, Dokl. AN BSSR, 4:2 (1960), 47–50

[15] V. V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izdatelskii tsentr BGU, Minsk, 2007

[16] V. V. Tsegelnik, “Gamiltoniany, assotsiirovannye s shestym uravneniem Penleve”, TMF, 151:1 (2007), 54–65 | DOI | DOI | MR | Zbl

[17] V. V. Tsegelnik, “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, TMF, 162:1 (2010), 69–74 | DOI | DOI | MR | Zbl

[18] B. I. Suleimanov, “ ‘Kvantovaniya’ vysshikh gamiltonovykh analogov uravnenii I i II s dvumya stepenyami svobody”, Funkts. analiz i ego prilozh., 48:3 (2014), 52–62 | DOI | DOI | MR | Zbl