Darboux transformations for the strict KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 339-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of Darboux transformations for the strict KP hierarchy. We previously showed that solutions of this integrable hierarchy can be constructed from a flag variety $\mathcal{F}(1)$. Here, we describe which two points in this flag variety are connected by such a transformation. Moreover, we present a closed form of the operators that realize this transformation and describe their geometric characteristics. We show which of these Darboux transformations map solutions of the strict $n$-KdV hierarchy to other solutions of this reduction of the strict KP hierarchy.
Keywords: pseudodifferential operator, (strict) KP hierarchy, (dual) linearization, (dual) oscillating function, (dual) wave function
Mots-clés : Darboux transformation.
@article{TMF_2021_206_3_a2,
     author = {G. F. Helminck and E. A. Panasenko},
     title = {Darboux transformations for the~strict {KP} hierarchy},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {339--360},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/}
}
TY  - JOUR
AU  - G. F. Helminck
AU  - E. A. Panasenko
TI  - Darboux transformations for the strict KP hierarchy
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 339
EP  - 360
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/
LA  - ru
ID  - TMF_2021_206_3_a2
ER  - 
%0 Journal Article
%A G. F. Helminck
%A E. A. Panasenko
%T Darboux transformations for the strict KP hierarchy
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 339-360
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/
%G ru
%F TMF_2021_206_3_a2
G. F. Helminck; E. A. Panasenko. Darboux transformations for the strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 339-360. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/

[1] G. Darboux, “Sur une proposition relative aux équations linéaires”, C. R. Acad. Sci. Paris, 94 (1882), 1456–1459 | Zbl

[2] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1991 | MR

[3] G. F. Khelmink, A. G. Khelmink, E. A. Panasenko, “Integriruemye deformatsii v algebre psevdodifferentsialnykh operatorov s tochki zreniya algebraicheskoi teorii Li”, TMF, 174:1 (2013), 154–176 | DOI | DOI | MR | Zbl

[4] G. F. Khelmink, E. A. Panasenko, “Geometricheskie resheniya strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 198:1 (2019), 54–78 | DOI | DOI | MR

[5] M. Adler, P. van Moerbeke, P. VanHaecke, Algebraic Integrability, Painlevé Geometry and Lie Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 47, Springer, Berlin, 2004 | MR

[6] A. Pressli, G. Sigal, Gruppy petel, Mir, M., 1990 | MR | MR | Zbl

[7] G. Segal, G. Wilson, “Loop groups and equations of KdV type”, Publ. Math. IHES, 61 (1985), 5–65 | DOI | MR

[8] G. F. Helminck, G. F. Post, “Geometrical interpretation of the bilinear equations for the KP hierarchy”, Lett. Math. Phys., 16:4 (1988), 359–364 | DOI | MR

[9] G. F. Helminck, J. W. van de Leur, “Darboux transformations for the $KP$-hierarchy in the Segal–Wilson setting”, Canad. J. Math., 53:2 (2001), 278–309 | DOI | MR

[10] M. M. Crum, “Associated Sturm–Liouville systems”, Quart. J. Math., 6:1 (1955), 121–127 | DOI | MR

[11] G. F. Khelmink, E. A. Panasenko, “Reduktsii strogoi ierarkhii Kadomtseva–Petviashvili”, TMF, 205:2 (2020), 190–207 | DOI | DOI | MR