Darboux transformations for the~strict KP hierarchy
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 339-360
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce the notion of Darboux transformations for the strict KP hierarchy. We previously showed that solutions of this integrable hierarchy can be constructed from a flag variety $\mathcal{F}(1)$. Here, we describe which two points in this flag variety are connected by such a transformation. Moreover, we present a closed form of the operators that realize this transformation and describe their geometric characteristics. We show which of these Darboux transformations map solutions of the strict $n$-KdV hierarchy to other solutions of this reduction of the strict KP hierarchy.
Keywords:
pseudodifferential operator, (strict) KP hierarchy, (dual) linearization, (dual) oscillating function, (dual) wave function
Mots-clés : Darboux transformation.
Mots-clés : Darboux transformation.
@article{TMF_2021_206_3_a2,
author = {G. F. Helminck and E. A. Panasenko},
title = {Darboux transformations for the~strict {KP} hierarchy},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {339--360},
publisher = {mathdoc},
volume = {206},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/}
}
G. F. Helminck; E. A. Panasenko. Darboux transformations for the~strict KP hierarchy. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 339-360. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a2/