A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 279-294 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a realization of a representation of the $\mathfrak{sp}_4$ Lie algebra in the space of functions on a Lie group $Sp_4$. We find a function corresponding to a Gelfand–Tsetlin-type basis vector for $\mathfrak{sp}_4$ constructed by Zhelobenko. This function is expressed in terms of an $A$-hypergeometric function. Developing a new technique for working with such functions, we analytically find formulas for the action of the algebra generators in this basis (previously unknown formulas). These formulas turn out to be more complicated than the formulas for the action of generators in the Gelfand–Tsetlin-type basis constructed by Molev.
Keywords: $A$-hypergeometric function, Gelfand–Tsetlin basis.
@article{TMF_2021_206_3_a0,
     author = {D. V. Artamonov},
     title = {A {Gelfand{\textendash}Tsetlin-type} basis for the~algebra $\mathfrak{sp}_4$ and},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {279--294},
     year = {2021},
     volume = {206},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/}
}
TY  - JOUR
AU  - D. V. Artamonov
TI  - A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 279
EP  - 294
VL  - 206
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/
LA  - ru
ID  - TMF_2021_206_3_a0
ER  - 
%0 Journal Article
%A D. V. Artamonov
%T A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 279-294
%V 206
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/
%G ru
%F TMF_2021_206_3_a0
D. V. Artamonov. A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 279-294. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/

[1] D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, MTsNMO, M., 2007 | MR | Zbl

[2] A. I. Molev, Yangiany i klassicheskie algebry Li, MTsNMO, M., 2009

[3] L. C. Baid, G. E. Biedenharn, “On the representations of semisimple Lie groups. II”, J. Math. Phys., 4:12 (1963), 1449–1466 | DOI | MR

[4] D. V. Artamonov, “Formula for the product of Gauss hypergeometric functions and applications ”, J. Math. Sci. (N. Y.), 249 (2020), 817–826 | DOI | MR

[5] D. V. Artamonov, “Koeffitsienty Klebsha–Gordana dlya $\mathfrak{gl}_3$ i gipergeometricheskie funktsii”, Algebra i analiz, 33:1 (2021), 1–29

[6] P. Valinevich, “Postroenie bazisa Gelfanda–Tsetlina dlya predstavlenii osnovnoi unitarnoi serii algebry $sl_n(\mathbb{C})$”, TMF, 198:1, 162–174 | DOI | DOI

[7] V. K. Dobrev, P. Truinin, “Polynomial realization of $U_q(sl(3))$ Gel'fand–(Weyl)–Zetlin basis”, J. Math. Phys., 38:7 (1997), 3750–3767 | DOI | MR | Zbl

[8] V. K. Dobrev, A. D. Mitov, P. Truinin, “Normalized $U_q(sl(3))$ Gel'fand–(Weyl)–Zetlin basis and new summation formulas for $q$-hypergeometric functions”, J. Math. Phys., 41:11 (2000), 7752–7768 | DOI | MR

[9] N. Hambli, J. Michelson, R. T. Sharp, “Character states and generator matrix elements for $Sp(4)\supset SU(2)\times U(1)$”, J. Math. Phys., 37:6 (1996), 3022–3031, arXiv: nucl-th/9510034 | DOI | MR

[10] S. Alisauskas, “Biorthogonal systems for $SU_4\supset SU_2\times SU_2$, $SU_n\supset SO_n$ and $Sp_4\supset U_2$ and analytical inversion symmetry”, J. Phys. A: Math. Gen., 20:5 (1987), 1045–1063 | DOI | MR

[11] J. A. Evans, N. Kraus, “An exact solution of the pairing plus monopole Hamiltonian using a boson representation of the group $Sp_4$”, Phys. Lett. B, 37:5 (1971), 455–459 | DOI

[12] J.-Q. Chen, J. Ping, F. Wang, Group Representation Theory for Physicists, World Sci., Singapore, 2002 | DOI | MR

[13] I. M. Gelfand, M. I. Graev, V. S. Retakh, “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, UMN, 47:4(286) (1992), 3–82 | DOI | MR | Zbl

[14] D. V. Artamonov, A Gelfand–Tsetlin type base for the algebra $\mathfrak{sp}_4$ and hypergeometric functions, arXiv: 2011.02334