A Gelfand--Tsetlin-type basis for the~algebra $\mathfrak{sp}_4$ and
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 279-294
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a realization of a representation of the $\mathfrak{sp}_4$ Lie algebra in the space of functions on a Lie group $Sp_4$. We find a function corresponding to a Gelfand–Tsetlin-type basis vector for $\mathfrak{sp}_4$ constructed by Zhelobenko. This function is expressed in terms of an $A$-hypergeometric function. Developing a new technique for working with such functions, we analytically find formulas for the action of the algebra generators in this basis (previously unknown formulas). These formulas turn out to be more complicated than the formulas for the action of generators in the Gelfand–Tsetlin-type basis constructed by Molev.
Keywords:
$A$-hypergeometric function, Gelfand–Tsetlin basis.
@article{TMF_2021_206_3_a0,
author = {D. V. Artamonov},
title = {A {Gelfand--Tsetlin-type} basis for the~algebra $\mathfrak{sp}_4$ and},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {279--294},
publisher = {mathdoc},
volume = {206},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/}
}
D. V. Artamonov. A Gelfand--Tsetlin-type basis for the~algebra $\mathfrak{sp}_4$ and. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 3, pp. 279-294. http://geodesic.mathdoc.fr/item/TMF_2021_206_3_a0/