@article{TMF_2021_206_2_a8,
author = {V. I. Kochkin},
title = {Dynamics of {the~Friedmann} universe with boundary terms added to the~action},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {269--276},
year = {2021},
volume = {206},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/}
}
V. I. Kochkin. Dynamics of the Friedmann universe with boundary terms added to the action. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/
[1] S. Vainberg, Gravitatsiya i kosmologiya. Printsipy i prilozheniya obschei teorii otnositelnosti, Mir, M., 1975
[2] A. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038, arXiv: astro-ph/9805201 | DOI
[3] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586, arXiv: astro-ph/9812133 | DOI
[4] Yu. L. Bolotin, D. A. Erokhin, O. A. Lemets, “Rasshiryayuschayasya Vselennaya: zamedlenie ili uskorenie”, UFN, 182:9 (2012), 941–986 | DOI | DOI
[5] S. Carneiro, M. A. Dantas, C. Pigozzo, J. S. Alcaniz, “Observational constraints on late-time $\Lambda(t)$ cosmology”, Phys. Rev. D, 77:8 (2008), 083504, 7 pp., arXiv: 0711.2686 | DOI
[6] M. Bronstein, “On the expanding universe”, Phys. Z. Sowjetunion, 3 (1933), 73–82 | Zbl
[7] M. Özer, M. O. Taha, “A possible solution to the main cosmological problems”, Phys. Lett. B, 171:4 (1986), 363–365 | DOI
[8] K. Freese, F. C. Adams, J. A. Frieman, E. Mottola, “Cosmology with decaying vacuum energy”, Nucl. Phys. B, 287 (1987), 797–814 | DOI
[9] W. Chen, Y-S. Wu, “Implications of a cosmological constant varying as $R^{-2}$”, Phys. Rev. D, 41:2 (1990), 695–698 | DOI | MR
[10] J. C. Carvalho, J. A. S. Lima, I. Waga, “Cosmological consequences of a time-dependent $\Lambda$ term”, Phys. Rev. D, 46:6 (1992), 2404–2407 | DOI
[11] A.-M. M. Abdel-Rahman, “Singularity-free decaying-vacuum cosmologies”, Phys. Rev. D, 45:10 (1992), 3497–3511 | DOI
[12] J. A. S. Lima, M. Trodden, “Decaying vacuum energy and deflationary cosmology in open and closed universes”, Phys. Rev. D, 53:8 (1996), 4280–4286, arXiv: astro-ph/9508049 | DOI
[13] J. M. Overduin, F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term”, Phys. Rev. D, 58:4 (1998), 043506, 23 pp., arXiv: astro-ph/9805260 | DOI
[14] S. Vainberg, “Problema kosmologicheskoi postoyannoi”, UFN, 158:4 (1989), 639–678 | DOI
[15] G. W. Gibbons, S. W. Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15:10 (1977), 2752–2756 | DOI | MR
[16] Y.-F. Cai, J. Liu, H. Li, “Entropic cosmology: a unified model of inflation and late-time acceleration”, Phys. Lett. B, 690:3 (2010), 213–219, arXiv: 1003.4526 | DOI
[17] D. A. Easson, P. H. Frampton, G. F. Smoot, “Entropic accelerating universe”, Phys. Lett. B, 696:3 (2011), 273–277, arXiv: 1002.4278 | DOI
[18] C. A. Sporea, “Notes on $f(R)$ theories of gravity”, arXiv: 1403.3852
[19] N. J. Poplawski, “Interacting dark energy in $f(R)$ gravity”, Phys. Rev. D, 74:8 (2006), 084032, 8 pp., arXiv: gr-qc/0607124 | DOI
[20] N. J. Poplawski, “A Lagrangian description of interacting dark energy”, arXiv: gr-qc/0608031
[21] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI
[22] A. Linde, “Inflation, quantum cosmology and the anthropic principle”, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, eds. J. D. Barrow, P. C. W. Davies, C. L. Harper, Jr., Cambridge Univ. Press, Cambridge, 2011, 426–458, arXiv: hep-th/0211048 | DOI
[23] S. V. Chernov, I. V. Fomin, A. Beesham, “The method of generating functions in exact scalar field cosmology”, Eur. Phys. J. C, 78 (2018), 301, 14 pp., arXiv: 1704.08712 | DOI
[24] V. Poulin, T. L. Smith, T. Karwal, M. Kamionkowski, “Early dark energy can resolve the Hubble tension”, Phys. Rev. Lett., 122:22 (2019), 221301, 7 pp., arXiv: 1811.04083 | DOI