Dynamics of the Friedmann universe with boundary terms added to the action
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 269-276 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the dynamics of the universe following from the variational principle with boundary terms added to the action. We calculate a scalar function that effectively accounts for the contribution of these boundary terms to the density and pressure of the medium filling the universe. An interesting result of the proposed approach is that a superfast expansion stage arises automatically (without additional conditions). We show the connection between the description of inflationary expansion based on the scalar field and our model.
Keywords: variational principle, cosmological constant, inflationary expansion, scalar field.
@article{TMF_2021_206_2_a8,
     author = {V. I. Kochkin},
     title = {Dynamics of {the~Friedmann} universe with boundary terms added to the~action},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {269--276},
     year = {2021},
     volume = {206},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/}
}
TY  - JOUR
AU  - V. I. Kochkin
TI  - Dynamics of the Friedmann universe with boundary terms added to the action
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 269
EP  - 276
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/
LA  - ru
ID  - TMF_2021_206_2_a8
ER  - 
%0 Journal Article
%A V. I. Kochkin
%T Dynamics of the Friedmann universe with boundary terms added to the action
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 269-276
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/
%G ru
%F TMF_2021_206_2_a8
V. I. Kochkin. Dynamics of the Friedmann universe with boundary terms added to the action. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 269-276. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a8/

[1] S. Vainberg, Gravitatsiya i kosmologiya. Printsipy i prilozheniya obschei teorii otnositelnosti, Mir, M., 1975

[2] A. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038, arXiv: astro-ph/9805201 | DOI

[3] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of $\Omega$ and $\Lambda$ from 42 high-redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586, arXiv: astro-ph/9812133 | DOI

[4] Yu. L. Bolotin, D. A. Erokhin, O. A. Lemets, “Rasshiryayuschayasya Vselennaya: zamedlenie ili uskorenie”, UFN, 182:9 (2012), 941–986 | DOI | DOI

[5] S. Carneiro, M. A. Dantas, C. Pigozzo, J. S. Alcaniz, “Observational constraints on late-time $\Lambda(t)$ cosmology”, Phys. Rev. D, 77:8 (2008), 083504, 7 pp., arXiv: 0711.2686 | DOI

[6] M. Bronstein, “On the expanding universe”, Phys. Z. Sowjetunion, 3 (1933), 73–82 | Zbl

[7] M. Özer, M. O. Taha, “A possible solution to the main cosmological problems”, Phys. Lett. B, 171:4 (1986), 363–365 | DOI

[8] K. Freese, F. C. Adams, J. A. Frieman, E. Mottola, “Cosmology with decaying vacuum energy”, Nucl. Phys. B, 287 (1987), 797–814 | DOI

[9] W. Chen, Y-S. Wu, “Implications of a cosmological constant varying as $R^{-2}$”, Phys. Rev. D, 41:2 (1990), 695–698 | DOI | MR

[10] J. C. Carvalho, J. A. S. Lima, I. Waga, “Cosmological consequences of a time-dependent $\Lambda$ term”, Phys. Rev. D, 46:6 (1992), 2404–2407 | DOI

[11] A.-M. M. Abdel-Rahman, “Singularity-free decaying-vacuum cosmologies”, Phys. Rev. D, 45:10 (1992), 3497–3511 | DOI

[12] J. A. S. Lima, M. Trodden, “Decaying vacuum energy and deflationary cosmology in open and closed universes”, Phys. Rev. D, 53:8 (1996), 4280–4286, arXiv: astro-ph/9508049 | DOI

[13] J. M. Overduin, F. I. Cooperstock, “Evolution of the scale factor with a variable cosmological term”, Phys. Rev. D, 58:4 (1998), 043506, 23 pp., arXiv: astro-ph/9805260 | DOI

[14] S. Vainberg, “Problema kosmologicheskoi postoyannoi”, UFN, 158:4 (1989), 639–678 | DOI

[15] G. W. Gibbons, S. W. Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev. D, 15:10 (1977), 2752–2756 | DOI | MR

[16] Y.-F. Cai, J. Liu, H. Li, “Entropic cosmology: a unified model of inflation and late-time acceleration”, Phys. Lett. B, 690:3 (2010), 213–219, arXiv: 1003.4526 | DOI

[17] D. A. Easson, P. H. Frampton, G. F. Smoot, “Entropic accelerating universe”, Phys. Lett. B, 696:3 (2011), 273–277, arXiv: 1002.4278 | DOI

[18] C. A. Sporea, “Notes on $f(R)$ theories of gravity”, arXiv: 1403.3852

[19] N. J. Poplawski, “Interacting dark energy in $f(R)$ gravity”, Phys. Rev. D, 74:8 (2006), 084032, 8 pp., arXiv: gr-qc/0607124 | DOI

[20] N. J. Poplawski, “A Lagrangian description of interacting dark energy”, arXiv: gr-qc/0608031

[21] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI

[22] A. Linde, “Inflation, quantum cosmology and the anthropic principle”, Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexity, eds. J. D. Barrow, P. C. W. Davies, C. L. Harper, Jr., Cambridge Univ. Press, Cambridge, 2011, 426–458, arXiv: hep-th/0211048 | DOI

[23] S. V. Chernov, I. V. Fomin, A. Beesham, “The method of generating functions in exact scalar field cosmology”, Eur. Phys. J. C, 78 (2018), 301, 14 pp., arXiv: 1704.08712 | DOI

[24] V. Poulin, T. L. Smith, T. Karwal, M. Kamionkowski, “Early dark energy can resolve the Hubble tension”, Phys. Rev. Lett., 122:22 (2019), 221301, 7 pp., arXiv: 1811.04083 | DOI