Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 245-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of the concept of time correlation functions, we develop a self-consistent relaxation theory of the transverse collective particle dynamics in liquids. The theory agrees with well-known results in both the short-wave (free-particle dynamics) and the long-wave (hydrodynamic) limits. We obtain a general expression for the spectral density $C_{\mathrm{T}}(k,\omega)$ of the transverse particle current realized in a range of wave numbers $k$. In the domain of microscopic spatial scales comparable to the action range of effective forces of interparticle interaction, the theory reproduces a transition from a regime with typical equilibrium liquid dynamics to a regime with collective particle dynamics where properties similar to solid-state properties appear: effective shear stiffness and transverse (shear) acoustic waves. In the framework of the corresponding approximations, we obtain expressions for the spectral density of transverse particle current for all characteristic regimes in equilibrium collective dynamics. We obtain expressions for the dispersion law for transverse (shear) acoustic waves and also relations for the kinematic shear viscosity $\nu$, the transverse speed of sound $v^{({\mathrm{T}})}$, and the corresponding sound damping coefficient $\Gamma^{({\mathrm{T}})}$. We compare the theoretical results with the results of atomistic dynamics simulations of liquid lithium near the melting point.
Mots-clés : liquid, collective excitation
Keywords: shear wave, hydrodynamics, viscosity.
@article{TMF_2021_206_2_a7,
     author = {A. V. Mokshin and R. M. Khusnutdinoff and Ya. Z. Vilf and B. N. Galimzyanov},
     title = {Quasi-solid state microscopic dynamics in equilibrium classical liquids: {Self-consistent} relaxation theory},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {245--268},
     year = {2021},
     volume = {206},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a7/}
}
TY  - JOUR
AU  - A. V. Mokshin
AU  - R. M. Khusnutdinoff
AU  - Ya. Z. Vilf
AU  - B. N. Galimzyanov
TI  - Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 245
EP  - 268
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a7/
LA  - ru
ID  - TMF_2021_206_2_a7
ER  - 
%0 Journal Article
%A A. V. Mokshin
%A R. M. Khusnutdinoff
%A Ya. Z. Vilf
%A B. N. Galimzyanov
%T Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 245-268
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a7/
%G ru
%F TMF_2021_206_2_a7
A. V. Mokshin; R. M. Khusnutdinoff; Ya. Z. Vilf; B. N. Galimzyanov. Quasi-solid state microscopic dynamics in equilibrium classical liquids: Self-consistent relaxation theory. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 245-268. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a7/

[1] Ya. I. Frenkel, Kineticheskaya teoriya zhidkostei, Nauka, L., 1975 | MR

[2] A. M. Prokhorov, D. M. Alekseev, A. M. Bonch-Bruevich, A. S. Borovik-Romanov i dr. (red.), Fizicheskii entsiklopedicheskii clovar, Sov. entsiklopediya, M., 1983 | MR

[3] A. M. Prokhorov, D. M. Alekseev, A. M. Baldin, A. M. Bonch-Bruevich, A. S. Borovik-Romanov i dr. (red.), Fizicheskaya entsiklopediya, v. II, Bolshaya Rossiiskaya entsiklopediya, M., 1998

[4] K. Trachenko, V. V. Brazhkin, “Collective modes and thermodynamics of the liquid state”, Rep. Prog. Phys., 79:1 (2016), 016502, 36 pp., arXiv: 1512.06592 | DOI | MR

[5] E. E. Tareeva, Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, “Zakriticheskie anomalii i liniya Vidoma dlya izostrukturnogo fazovogo perekhoda v tverdom tele”, TMF, 194:1 (2018), 175–184 | DOI | DOI

[6] A. V. Granato, “The Shear Modulus of Liquids”, J. Phys. IV France, 06:C8 (1996), C8-1–C8-9, 9 pp. | DOI

[7] D. Levesque, L. Verlet, J. Kürkijarvi, “Computer ‘experiments’ on classical fluids. IV. Transport properties and time-correlation functions of the Lennard-Jones liquid near its triple point”, Phys. Rev. A, 7:5 (1973), 1690–1700 | DOI

[8] L. Sjögren, “Kinetic theory of classical liquids. III. Numerical results on the transverse current correlation in liquid argon”, Ann. Phys., 110:1 (1978), 173–179 | DOI | MR

[9] Z. Donkó, G. J. Kalman, P. Hartmann, “Dynamical correlations and collective excitations of Yukawa liquids”, J. Phys.: Condens. Matter, 20:41 (2008), 413101, 35 pp. | DOI

[10] S. A. Khrapak, A. G. Khrapak, N. P. Kryuchkov, S. O. Yurchenko, “Onset of transverse (shear) waves in strongly-coupled Yukawa fluids”, J. Chem. Phys., 150:10 (2019), 104503, 8 pp., arXiv: 1902.09874 | DOI

[11] R. E. Ryltsev, N. M. Chtchelkatchev, V. N. Ryzhov, “Superfragile glassy dynamics of a one-component system with isotropic potential: competition of diffusion and frustration”, Phys. Rev. Lett., 110:2 (2013), 025701, 5 pp., arXiv: 1301.2162 | DOI

[12] B. G. del Rio, L. E. González, “Longitudinal, transverse, and single-particle dynamics in liquid Zn: Ab initio study and theoretical analysis”, Phys. Rev. B, 95:22 (2017), 224201, 15 pp. | DOI

[13] N. Jakse, T. Bryk, “Pressure evolution of transverse collective excitations in liquid Al along the melting line”, J. Chem. Phys., 151:3 (2019), 034506, 8 pp. | DOI

[14] M. Ropo, J. Akola, R. O. Jones, “Collective excitations and viscosity in liquid Bi”, J. Chem. Phys., 145:18 (2016), 184502, 8 pp. | DOI | MR

[15] Yu. D. Fomin, E. N. Tsiok, V. N. Ryzhov, V. V. Brazhkin, “Anomalous behavior of dispersion of longitudinal and transverse collective excitations in water”, J. Mol. Liq., 287 (2019), 110992, 4 pp. | DOI

[16] L. Wang, C. Yang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, K. Trachenko, “The nature of collective excitations and their crossover at extreme supercritical conditions”, Sci. Rep., 9 (2019), 755, 9 pp., arXiv: 1901.10052 | DOI

[17] S. Hosokawa, M. Inui, Y. Kajihara, S. Tsutsui, A. Q. R. Baron, “Transverse excitations in liquid Fe, Cu and Zn”, J. Phys.: Condens. Matter, 27:19 (2015), 194104, 7 pp. | DOI

[18] P. A. Egelstaff, An Introduction to the Liquid State, Academic Press, New York, 1967

[19] E. Burkel, H. Sinn, “Inelastic X-ray scattering: a new technique for studying dynamics in liquids”, J. Phys.: Condens. Matter, 6:23A (1994), A225–A228 | DOI

[20] S. Hosokawa, M. Inui, Y. Kajihara, K. Matsuda, T. Ichitsubo, W.-C. Pilgrim, H. Sinn, L. E. González, D. J. González, S. Tsutsui, A. Q. R. Baron, “Transverse acoustic excitations in liquid Ga”, Phys. Rev. Lett., 102:10 (2009), 105502, 4 pp. | DOI

[21] S. Hosokawa, S. Munejiri, M. Inui, Y. Kajihara, W.-C. Pilgrim, Y. Ohmasa, S. Tsutsui, A. Q. R. Baron, F. Shimojo, K. Hoshino, “Transverse excitations in liquid Sn”, J. Phys.: Condens. Matter, 25:11 (2013), 112101, 5 pp. | DOI

[22] V. M. Giordano, G. Monaco, “Fingerprints of order and disorder on the high-frequency dynamics of liquids”, Proc. Natl. Acad. Sci. USA, 107:51 (2010), 21985–21989 | DOI

[23] V. M. Giordano, G. Monaco, “Inelastic x-ray scattering study of liquid Ga: implications for the short-range order”, Phys. Rev. B, 84:5 (2011), 052201, 4 pp. | DOI

[24] R. A. MacPhail, D. Kivelson, “Generalized hydrodynamic theory of viscoelasticity”, J. Chem. Phys., 80:5 (1984), 2102–2114 | DOI

[25] T. Bryk, I. Mryglod, “Generalized hydrodynamics of binary liquids: transverse collective modes”, Phys. Rev. E, 62:2 (2000), 2188–2199 | DOI

[26] I. P. Omelyan, I. M. Mryglod, “Generalized collective modes of a Lennard-Jones fluid. High mode approximation”, Condens. Matter Phys., 4 (1994), 128–160 | DOI

[27] K. Trachenko, “Lagrangian formulation and symmetrical description of liquid dynamics”, Phys. Rev. E, 96:6 (2017), 062134, 5 pp., arXiv: 1710.01390 | DOI

[28] M. Baggioli, M. Vasin, V. Brazhkin, K. Trachenko, “Gapped momentum states”, Phys. Rep., 865 (2020), 1–44, arXiv: 1904.01419 | DOI | MR

[29] N. P. Kryuchkov, L. A. Mistryukova, V. V. Brazhkin, S. O. Yurchenko, “Excitation spectra in fluids: how to analyze them properly”, Sci. Rep., 9 (2019), 10483, 12 pp. | DOI

[30] N. P. Kryuchkov, V. V. Brazhkin, S. O. Yurchenko, “Anticrossing of longitudinal and transverse modes in simple fluids”, J. Phys. Chem. Lett., 10:15 (2019), 4470–4475 | DOI

[31] E. V. Yakovlev, N. P. Kryuchkov, P. V. Ovcharov, A. V. Sapelkin, V. V. Brazhkin, S. O. Yurchenko, “Direct experimental evidence of longitudinal and transverse mode hybridization and anticrossing in simple model fluids”, J. Phys. Chem. Lett., 11:4 (2020), 1370–1376 | DOI

[32] Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, V. V. Brazhkin, K. Trachenko, “Corrigendum: Crossover of collective modes and positive sound dispersion in supercritical state”, J. Phys.: Condens. Matter, 29:5 (2017), 059501, 1 pp. | DOI

[33] V. V. Brazhkin, Yu. D. Fomin, V. N. Ryzhov, E. N. Tsiok, K. Trachenko, “Liquid-like and gas-like features of a simple fluid: an insight from theory and simulation”, Phys. A, 509 (2018), 690–702 | DOI

[34] R. M. Yulmetyev, A. V. Mokshin, P. Hänggi, V. Yu. Shurygin, “Time-scale invariance of relaxation processes of density fluctuation in slow neutron scattering in liquid cesium”, Phys. Rev. E, 64:5 (2001), 057101, 4 pp., arXiv: cond-mat/0111467 | DOI

[35] R. M. Yul'met'yev, A. V. Mokshin, P. Hänggi, V. Yu. Shurygin, “Dynamic structure factor in liquid cesium on the basis of time-scale invariance of relaxation processes”, Pisma v ZhETF, 76:3 (2002), 181–184 | DOI

[36] A. V. Mokshin, B. N. Galimzyanov, “Self-consistent description of local density dynamics in simple liquids. The case of molten lithium”, J. Phys.: Condens. Matter, 30:8 (2018), 085102, 17 pp., arXiv: 1801.04879 | DOI

[37] R. M. Yulmetyev, A. V. Mokshin, T. Scopigno, P. Hänggi, “New evidence for the idea of timescale invariance of relaxation processes in simple liquids: the case of molten sodium”, J. Phys.: Codens. Matter, 15:14 (2003), 2235–2257 | DOI

[38] A. V. Mokshin, R. M. Yulmetyev, P. Hänggi, “Relaxation time scales in collective dynamics of liquid alkali metals”, J. Chem. Phys., 121:15 (2004), 7341–7346, arXiv: cond-mat/0506636 | DOI

[39] A. V. Mokshin, R. M. Yulmetev, R. M. Khusnutdinov, P. Khanggi, “Kollektivnaya dinamika zhidkogo alyuminiya vblizi temperatury plavleniya: teoriya i kompyuternoe modelirovanie”, ZhETF, 130:6 (2006), 974–983 | DOI

[40] A. V. Mokshin, R. M. Yulmetyev, R. M. Khusnutdinoff, P. Hänggi, “Analysis of the dynamics of liquid aluminium: recurrent relation approach”, J. Phys.: Condens. Matter, 19:4 (2007), 046209, 16 pp. | DOI

[41] R. M. Khusnutdinoff, C. Cockrell, O. A. Dicks, A. C. S. Jensen, M. D. Le, L. Wang, M. T. Dove, A. V. Mokshin, V. V. Brazhkin, K. Trachenko, “Collective modes and gapped momentum states in liquid Ga: experiment, theory, and simulation”, Phys. Rev. B, 101:21 (2020), 214312, 9 pp., arXiv: 2005.00470 | DOI

[42] V. N. Ryzhov, A. F. Barabanov, M. V. Magnitskaya, E. E. Tareeva, “Teoreticheskie issledovaniya kondensirovannykh sred”, UFN, 178:10 (2008), 1118–1124 | DOI | DOI

[43] J.-P. Hansen, I. R. McDonald, Theory of Simple Liquids, Academic Press, London, 2006

[44] R. Zwanzig, Nonequilibrium Statistical Mechanics, Oxford Univ. Press, Oxford, 2001 | MR

[45] A. V. Mokshin, R. M. Yulmetev, Mikroskopicheskaya dinamika prostykh zhidkostei, Tsentr innovatsionnykh tekhnologii, Kazan, 2006

[46] B. A. Klumov, “O kriteriyakh plavleniya kompleksnoi plazmy”, UFN, 180:10 (2010), 1095–1108 | DOI

[47] U. Balucani, M. H. Lee, V. Tognetti, “Dynamical correlations”, Phys. Rep., 373:6 (2003), 409–492 | DOI | MR

[48] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, v. 1, Funktsionalnyi analiz, Mir, M., 1977 | MR | Zbl

[49] A. A. Vladimirov, D. Ile, N. M. Plakida, “Dinamicheskaya spinovaya vospriimchivost v $t$–$J$-modeli: metod funktsii pamyati”, TMF, 145:2 (2005), 240–255 | DOI | DOI | MR | Zbl

[50] M. H. Lee, “Generalized Langevin equation and recurrence relations”, Phys. Rev. E, 62:2 (2000), 1769–1772 | DOI

[51] A. V. Mokshin, R. M. Yulmetyev, P. Hänggi, “Simple measure of memory for dynamical processes described by a generalized Langevin equation”, Phys. Rev. Lett., 95:20 (2005), 200601, 4 pp., arXiv: cond-mat/0511308 | DOI

[52] A. V. Mokshin, “Samosoglasovannyi podkhod k opisaniyu relaksatsionnykh protsessov v klassicheskikh mnogochastichnykh sistemakh”, TMF, 183:1 (2015), 3–35 | DOI | DOI | MR

[53] N. N. Bogolyubov, Problemy dinamicheskoi teorii v statisticheskoi fizike, Gostekhizdat, M.–L., 1946 | MR

[54] W. Götze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory, International Series of Monographs on Physics, 143, Oxford Univ. Press, Oxford, 2012 | MR

[55] P. Rezibua, M. De Lener, Klassicheskaya kineticheskaya teoriya zhidkostei i gazov, M., Mir, 1980

[56] R. Mountain, “Spectral distribution of scattered light in a simple fluid”, Rev. Modern Phys., 38:1 (1966), 205–214 | DOI

[57] T. Scopigno, U. Balucani, G. Ruocco, F. Sette, “Density fluctuations in molten lithium: inelastic x-ray scattering study”, J. Phys.: Condens. Matter, 12:37 (2000), 8009–8034 | DOI

[58] I. K. Kamilov, A. K. Murtazaev, Kh. K. Aliev, “Issledovanie fazovykh perekhodov i kriticheskikh yavlenii metodami Monte-Karlo”, UFN, 169:7 (1999), 773–795 | DOI | DOI

[59] R. M. Khusnutdinov, B. N. Galimzyanov, A. V. Mokshin, “Dinamika atomov zhidkogo litiya. Psevdopotentsial i potentsialy EAM-tipa”, ZhETF, 153:1 (2018), 100–107 | DOI

[60] L. E. González, D. J. González, M. Silbert, J. A. Alonso, “A theoretical study of the static structure and thermodynamics of liquid lithium”, J. Phys.: Condens. Matter, 5:26 (1993), 4283–4298 | DOI

[61] A. V. Mokshin, A. V. Chvanova, R. M. Khusnutdinov, “Priblizhenie vzaimodeistvuyuschikh mod v drobno-stepennom obobschenii. Dinamika chastits v pereokhlazhdennykh zhidkostyakh i steklakh”, TMF, 171:1 (2012), 135–149 | DOI | DOI | MR

[62] Y. Waseda, The Structure of Non-Crystalline Materials: Liquids and Amorphous Solids, McGraw-Hill, New York, 1980

[63] R. W. Ohse (ed.), Handbook of Thermodynamic and Transport Properties of Alkali Metals, Chemical Data Series, 30, Blackwell Sci., Oxford, 1985

[64] A. V. Mokshin, B. N. Galimzyanov, “Corrigendum: Self-consistent description of local density dynamics in simple liquids. The case of molten lithium”, J. Phys.: Condens. Matter, 31:20 (2019), 209501, 1 pp. | DOI

[65] J. R. D. Copley, S. W. Lovesey, “The dynamic properties of monatomic liquids”, Rep. Prog. Phys., 38:4 (1975), 461–563 | DOI