Blowup relations on $\mathbb{C}^2/\mathbb{Z}_2$ from Nakajima–Yoshioka blowup relations
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 225-244 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using an elementary algebraic approach, from the Nakajima–Yoshioka blowup relations, we obtain bilinear relations for the Nekrasov partition functions arising in the study of the tau functions of quantum $q$-Painlevé equations. In addition, using this approach, we prove certain symmetry relations for Nekrasov partition functions modified by a Chern–Simons term.
Keywords: Nakajima–Yoshioka blowup relation, Nekrasov instanton partition function.
@article{TMF_2021_206_2_a6,
     author = {A. I. Shchechkin},
     title = {Blowup relations on $\mathbb{C}^2/\mathbb{Z}_2$ from {Nakajima{\textendash}Yoshioka} blowup relations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {225--244},
     year = {2021},
     volume = {206},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a6/}
}
TY  - JOUR
AU  - A. I. Shchechkin
TI  - Blowup relations on $\mathbb{C}^2/\mathbb{Z}_2$ from Nakajima–Yoshioka blowup relations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 225
EP  - 244
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a6/
LA  - ru
ID  - TMF_2021_206_2_a6
ER  - 
%0 Journal Article
%A A. I. Shchechkin
%T Blowup relations on $\mathbb{C}^2/\mathbb{Z}_2$ from Nakajima–Yoshioka blowup relations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 225-244
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a6/
%G ru
%F TMF_2021_206_2_a6
A. I. Shchechkin. Blowup relations on $\mathbb{C}^2/\mathbb{Z}_2$ from Nakajima–Yoshioka blowup relations. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 225-244. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a6/

[1] L. F. Alday, D. Gaiotto, Y. Tachikawa, “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91:2 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[2] O. Gamayun, N. Iorgov, O. Lisovyy, “Conformal field theory of Painlevé VI”, JHEP, 10 (2012), 38, 24 pp., arXiv: ; Erratum, 183, 2 pp. 1207.0787 | DOI | MR | Zbl | DOI

[3] O. Gamayun, N. Iorgov, O. Lisovyy, “How instanton combinatorics solves Painlevé VI, V and IIIs”, J. Phys. A: Math. Theor., 46:33 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR | Zbl

[4] M. Bershtein, A. Shchechkin, “$q$-deformed Painlevé $\tau$ function and $q$-deformed conformal blocks”, J. Phys. A: Math. Theor., 50:8 (2017), 085202, 22 pp., arXiv: 1608.02566 | DOI | MR | Zbl

[5] M. Jimbo, H. Nagoya, H. Sakai, “CFT approach to the $q$-Painlevé VI equation”, J. Integrable Syst., 2:1 (2017), xyx009, 27 pp., arXiv: 1706.01940 | MR | Zbl

[6] Y. Matsuhira, H. Nagoya, “Combinatorial expressions for the tau functions of $q$-Painlevé V and III equations”, SIGMA, 15 (2019), 074, 17 pp., arXiv: 1811.03285 | DOI

[7] P. Gavrylenko, “Isomonodromic $\tau$-functions and $W_N$ conformal blocks”, JHEP, 09 (2015), 167, 23 pp., arXiv: 1505.00259 | DOI | MR | Zbl

[8] N. Iorgov, O. Lisovyy, J. Teschner, “Isomonodromic $\tau$ functions from Liouville conformal blocks”, Commun. Math. Phys., 336:2 (2015), 671–694, arXiv: 1401.6104 | DOI | MR | Zbl

[9] M. Bershtein, A. Shchechkin, “Bilinear equations on Painlevé tau functions from CFT”, Commun. Math. Phys., 339:3 (2015), 1021–1061, arXiv: 1406.3008 | DOI | MR | Zbl

[10] M. Bershtein, A. Shchechkin, “Bäcklund transformation of Painlevé III($D_8$) $\tau$ function”, J. Phys. A: Math. Theor., 50:11 (2017), 115205, 31 pp., arXiv: 1608.02568 | DOI | MR | Zbl

[11] H. Nakajima, K. Yoshioka, “Instanton counting on blowup. II. K-theoretic partition function”, Transform. Groups, 10:3–4 (2005), 489–519, arXiv: math/0505553 | DOI | MR | Zbl

[12] G. Bonelli, K. Maruyoshi, A. Tanzini, “Instantons on ALE spaces and super Liouville conformal field theories”, JHEP, 08 (2011), 056, 9 pp., arXiv: 1106.2505 | DOI | MR | Zbl

[13] U. Bruzzo, M. Pedrini, F. Sala, R. Szabo, “Framed sheaves on root stacks and supersymmetric gauge theories on ALE spaces”, Adv. Math., 288 (2016), 1175–1308, arXiv: 1312.5554 | DOI | MR | Zbl

[14] M. Bershtein, A. Shchechkin, “Painlevé equations from Nakajima–Yoshioka blowup relations”, Lett. Math. Phys., 109:11 (2019), 2359–2402, arXiv: 1811.04050 | DOI | MR | Zbl

[15] M. Bershtein, P. Gavrylenko, A. Marshakov, “Cluster integrable systems, $q$-Painlevé equations and their quantization”, JHEP, 02 (2018), 077, 33 pp., arXiv: 1711.02063 | DOI | MR | Zbl

[16] M. A. Bershtein, P. G. Gavrilenko, A. V. Marshakov, “Klasternye tsepochki Tody i funktsii Nekrasova”, TMF, 198:2 (2019), 179–214 | DOI | DOI

[17] L. Göttshe, H. Nakajima, K. Yoshioka, “$K$-theoretic Donaldson invariants via instanton counting”, Pure Appl. Math. Quart., 5:3 (2009), 1029–1111, arXiv: math/0611945 | DOI | MR

[18] R. Fintushel, R. J. Stern, “The blowup formula for Donaldson invariants”, Ann. Math., 143:3 (1996), 529–546, arXiv: alg-geom/9405002 | DOI | MR | Zbl

[19] R. Brussee, Blow-up formulas for $(-2)$-spheres, arXiv: dg-ga/9412004

[20] H. Nakajima, K. Yoshioka, “Lectures on instanton counting”, Algebraic Structure (McGill University, Montréal, Canada, July 14–20, 2003), CRM Proceedings Lecture Notes, 38, eds. J. Hurtubise, E. Markman, AMS, Providence, RI, 2004, 31–101, arXiv: math/0311058 | DOI | MR | Zbl

[21] A. Its, O. Lisovyy, Yu. Tykhyy, “Connection problem for the sine-Gordon/Painlevé III tau function and irregular conformal blocks”, Int. Math. Res. Not., 2015:18 (2015), 8903–8924, arXiv: 1403.1235 | DOI | MR | Zbl

[22] G. Felder, M. Müller-Lennert, “Analyticity of Nekrasov partition functions”, Commun. Math. Phys., 364:2 (2018), 683–718, arXiv: 1709.05232 | DOI | MR | Zbl

[23] H. Nakajima, K. Yoshioka, “Perverse coherent sheaves on blow-up, III: Blow-up formula from wall-crossing”, Kyoto J. Math., 51:2 (2011), 263–335, arXiv: 0911.1773 | DOI | MR | Zbl

[24] A. Iqbal, A. K. Kashani-Poor, “Instanton counting and Chern–Simons theory”, Adv. Theor. Math. Phys., 7:3 (2003), 457–497, arXiv: hep-th/0212279 | DOI | MR | Zbl