@article{TMF_2021_206_2_a4,
author = {U. A. Rozikov},
title = {Thermodynamics of interacting systems of {DNA} molecules},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {199--209},
year = {2021},
volume = {206},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a4/}
}
U. A. Rozikov. Thermodynamics of interacting systems of DNA molecules. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 199-209. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a4/
[1] B. Alberts, A. Dzhonson, D. Lyuis, M. Reff, K. Roberts, P. Uolter, Molekulyarnaya biologiya kletki, NITs “Regulyarnaya i khaotichnaya dinamika”, M.–Izhevsk, 2013
[2] D. Swigon, “The mathematics of DNA structure, mechanics, and dynamics”, Mathematics of DNA Structure, Function and Interactions, The IMA Volumes in Mathematics and its Applications, 150, Springer, New York, 2009, 293–320 | DOI | MR
[3] C. Thompson, Mathematical Statistical Mechanics, Princeton Univ. Press, Princeton, 1972 | MR
[4] U. A. Rozikov, “Tree-hierarchy of DNA and distribution of Holliday junctions”, J. Math. Biol., 75:6–7 (2017), 1715–1733 | DOI | MR
[5] U. A. Rozikov, “Holliday junctions for the Potts model of DNA”, Algebra, Complex Analysis, and Pluripotential Theory (Urgench, Uzbekistan, August 8–12, 2017), Springer Proceedings in Mathematics and Statistics, 264, eds. Z. Ibragimov, N. Levenberg, U. Rozikov, A. Sadullaev, Springer, Cham, 2018, 151–165 | DOI | MR | Zbl
[6] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR
[7] U. A. Rozikov, F. T. Ishankulov, “Description of periodic $p$-harmonic functions on Cayley trees”, Nonlinear Differ. Equ. Appl., 17:2 (2010), 153–160 | DOI | MR
[8] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl
[9] L. V. Bogachev, U. A. Rozikov, “On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field”, J. Stat. Mech. Theory Exp., 2019:7 (2019), 073205, 76 pp. | DOI | MR
[10] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156:1 (2014), 189–200, arXiv: 1310.6220 | DOI | MR | Zbl
[11] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678, arXiv: 1403.5775 | DOI | MR