Novikov equation: Bäcklund transformation and applications
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 186-198 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the Novikov equation, we construct and study a Bäcklund transformation containing both independent and dependent variables. We use the reciprocal transformation that relates the Novikov equation and the associated Novikov equation. As an application, we derive the corresponding nonlinear superposition formula and present some solutions of the Novikov equation.
Keywords: Novikov equation, Bäcklund transformation, nonlinear superposition formula
Mots-clés : soliton.
@article{TMF_2021_206_2_a3,
     author = {Hui Mao},
     title = {Novikov equation: {B\"acklund} transformation and applications},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {186--198},
     year = {2021},
     volume = {206},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a3/}
}
TY  - JOUR
AU  - Hui Mao
TI  - Novikov equation: Bäcklund transformation and applications
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 186
EP  - 198
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a3/
LA  - ru
ID  - TMF_2021_206_2_a3
ER  - 
%0 Journal Article
%A Hui Mao
%T Novikov equation: Bäcklund transformation and applications
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 186-198
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a3/
%G ru
%F TMF_2021_206_2_a3
Hui Mao. Novikov equation: Bäcklund transformation and applications. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 186-198. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a3/

[1] V. Novikov, “Generalizations of the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:34 (2009), 342002, 14 pp. | DOI | MR

[2] A. N. W. Hone, J. P. Wang, “Integrable peakon equations with cubic nonlinearity”, J. Phys. A: Math. Theor., 41:37 (2008), 372002, 10 pp. | DOI | MR

[3] R. Camassa, D. D. Holm, “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664, arXiv: patt-sol/9305002 | DOI | MR

[4] A. N. W. Hone, H. Lundmark, J. Szmigielski, “Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa–Holm type equation”, Dyn. Partial Differ. Equ., 6:3 (2009), 253–289 | DOI | MR

[5] Y. Matsuno, “Smooth multisoliton solutions and their peakon limit of Novikov's Camassa–Holm type equation with cubic nonlinearity”, J. Phys. A: Math. Theor., 46:36 (2013), 365203, 27 pp. | DOI | MR

[6] L. Wu, C. Li, N. Li, “Soliton solutions to the Novikov equation and a negative flow of the Novikov hierarchy”, Appl. Math. Lett., 87 (2019), 134–140 | DOI | MR

[7] C. Rogers, W. F. Shadwick, Bäcklund Transformations and Their Applications, Mathematics in Science and Engineering, 161, Academic Press, New York–London, 1982 | MR

[8] C. Rogers, W. Schief, Bäcklund and Darboux Transformations. Geometry and Modern Applications in Soliton Theory, Cambridge Texts in Applied Mathematics, 30, Cambridge Univ. Press, Cambridge, 2002 | DOI | MR

[9] C. Gu, H. Hu, Z. Zhou, Darboux Transformation in Soliton Theory and its Geometric Applications, Shanghai Scientific and Technical Press, Shanghai, 2005

[10] J. Hietarinta, N. Joshi, F. W. Nijhoff, Discrete Systems and Integrability, Cambridge Texts in Applied Mathematics, 54, Cambridge Univ. Press, Cambridge, 2016 | DOI | MR

[11] Y. B. Suris, The Problem of Integrable Discretization: Hamiltonian Approach, Progress in Mathematics, 219, Birkhäuser, Basel, 2003 | DOI | MR

[12] D. Levi, R. Benguria, “Bäcklund transformations and nonlinear differential difference equations”, Proc. Nat. Acad. Sci. USA, 77:9 (1980), 5025–5027 | DOI | MR

[13] D. Levi, “Nonlinear differential difference equations as Bäcklund transformations”, J. Phys. A: Math. Gen., 14:5 (1981), 1083–1098 | DOI | MR

[14] A. G. Rasin, J. Schiff, “The Gardner method for symmetries”, J. Phys. A: Math. Theor., 46:15 (2013), 155202, 15 pp. | DOI | MR | Zbl

[15] A. G. Rasin, J. Schiff, “Bäcklund transformations for the Camassa–Holm equation”, J. Nonlinear Sci., 27:1 (2017), 45–69 | DOI | MR

[16] G. Wang, Q. P. Liu, H. Mao, “The modified Camassa–Holm equation: Bäcklund transformations and nonlinear superposition formula”, J. Phys. A: Math. Theor., 53:29 (2020), 294003, 15 pp. | DOI | MR

[17] Khuei Mao, Gai-Khua Van, “Preobrazovanie Beklunda dlya uravneniya Degasperisa–Prochezi”, TMF, 203:3 (2020), 365–379 | DOI | DOI

[18] A. G. Rasin, J. Schiff, “A simple-looking relative of the Novikov, Hirota–Satsuma and Sawada–Kotera equations”, J. Nonlinear Math. Phys., 26:4 (2019), 555–568 | DOI | MR

[19] C. Rogers, P. Wong, “On reciprocal Bäcklund transformations of inverse scattering schemes”, Phys. Scr., 30:1 (1984), 10–14 | DOI | MR