@article{TMF_2021_206_2_a2,
author = {Zhonglong Zhao and Lingchao He},
title = {Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a~$(2+1)$-dimensional {KdV{\textendash}mKdV} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {164--185},
year = {2021},
volume = {206},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a2/}
}
TY - JOUR AU - Zhonglong Zhao AU - Lingchao He TI - Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a $(2+1)$-dimensional KdV–mKdV equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 164 EP - 185 VL - 206 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a2/ LA - ru ID - TMF_2021_206_2_a2 ER -
%0 Journal Article %A Zhonglong Zhao %A Lingchao He %T Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a $(2+1)$-dimensional KdV–mKdV equation %J Teoretičeskaâ i matematičeskaâ fizika %D 2021 %P 164-185 %V 206 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a2/ %G ru %F TMF_2021_206_2_a2
Zhonglong Zhao; Lingchao He. Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a $(2+1)$-dimensional KdV–mKdV equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 164-185. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a2/
[1] G. W. Bluman, S. C. Anco, Symmetry and Itegration Methods for Differential Equations, Applied Mathematical Sciences, 154, Springer, New York, 2002 | MR
[2] G. W. Bluman, A. F. Cheviakov, S. C. Anco, Applications of Symmetry Methods to Partial Differential Equations, Applied Mathematical Sciences, 168, Springer, New York, 2010 | DOI | MR
[3] A. Paliathanasis, M. Tsamparlis, “Lie symmetries for systems of evolution equations”, J. Geom. Phys., 124 (2018), 165–169, arXiv: 1710.08824 | DOI | MR
[4] G. W. Bluman, A. F. Cheviakov, “Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation”, J. Math. Anal. Appl., 333:1 (2007), 93–111 | DOI | MR
[5] G. W. Bluman, A. F. Cheviakov, “Framework for potential systems and nonlocal symmetries: Algorithmic approach”, J. Math. Phys., 46:12 (2005), 123506, 19 pp. | DOI | MR
[6] G. W. Bluman, Z. Yang, “A symmetry-based method for constructing nonlocally related partial differential equation systems”, J. Math. Phys., 54:9 (2013), 093504, 22 pp., arXiv: 1211.0100 | DOI | MR
[7] P. Satapathy, T. Raja Sekhar, “Nonlocal symmetries classifications and exact solution of Chaplygin gas equations”, J. Math. Phys., 59:8 (2018), 081512, 13 pp. | DOI | MR | Zbl
[8] Z. Zhao, “Conservation laws and nonlocally related systems of the Hunter–Saxton equation for liquid crystal”, Anal. Math. Phys., 9:4 (2019), 2311–2327 | DOI | MR
[9] X.-R. Hu, S.-Y. Lou, Y. Chen, “Explicit solutions from eigenfunction symmetry of the Korteweg–de Vries equation”, Phys. Rev. E, 85:5 (2012), 056607, 8 pp. | DOI
[10] S. Y. Lou, X. Hu, Y. Chen, “Nonlocal symmetries related to Bäcklund transformation and their applications”, J. Phys. A: Math. Theor., 45:15 (2012), 155209, 14 pp. | DOI | MR
[11] J. Chen, Z. Ma, Y. Hu, “Nonlocal symmetry, Darboux transformation and soliton-cnoidal wave interaction solution for the shallow water wave equation”, J. Math. Anal. Appl., 460:2 (2018), 987–1003 | DOI | MR
[12] N. A. Kudryashov, “Painlevé analysis and exact solutions of the fourth-order equation for description of nonlinear waves”, Commun. Nonlinear Sci. Numer. Simul., 28:1–3 (2015), 1–9 | DOI | MR
[13] S. Y. Lou, Residual symmetries and Bäcklund transformations, arXiv: 1308.1140
[14] S.-J. Liu, X.-Y. Tang, S.-Y. Lou, “Multiple Darboux–Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach”, Chin. Phys. B, 27:6 (2018), 060201, 7 pp. | DOI
[15] Y.-H. Wang, H. Wang, “Nonlocal symmetry, CRE solvability and soliton–cnoidal solutions of the ($2+1$)-dimensional modified KdV–Calogero–Bogoyavlenkskii–Schiff equation”, Nonlinear Dynam., 89:1 (2017), 235–241 | DOI
[16] B. Ren, “Symmetry reduction related with nonlocal symmetry for Gardner equation”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 456–463 | DOI | MR
[17] B. Ren, X.-P. Cheng, J. Lin, “The ($2+1$)-dimensional Konopelchenko–Dubrovsky equation: nonlocal symmetries and interaction solutions”, Nonlinear Dynam., 86:3 (2016), 1855–1862 | DOI | MR
[18] L. Huang, Y. Chen, “Localized excitations and interactional solutions for the reduced Maxwell–Bloch equations”, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 237–252 | DOI | MR
[19] Z. Zhao, B. Han, “Residual symmetry, Bäcklund transformation and CRE solvability of a ($2+1$)-dimensional nonlinear system”, Nonlinear Dynam., 94:1 (2018), 461–474 | DOI
[20] S. Y. Lou, “Consistent Riccati expansion for integrable systems”, Stud. Appl. Math., 134:3 (2015), 372–402 | DOI | MR
[21] J. Chen, Z. Ma, “Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a ($2+1$)-dimensional Korteweg–de Vries equation”, Appl. Math. Lett., 64 (2017), 87–93 | DOI | MR
[22] Z. Zhao, “Bäcklund transformations, rational solutions and soliton-cnoidal wave solutions of the modified Kadomtsev–Petviashvili equation”, Appl. Math. Lett., 89 (2019), 103–110 | DOI | MR
[23] X.-Z. Liu, J. Yu, Z.-M. Lou, “New interaction solutions from residual symmetry reduction and consistent Riccati expansion of the ($2+1$)-dimensional Boussinesq equation”, Nonlinear Dynam., 92:2 (2018), 1469–1479 | DOI
[24] M. N. B. Mohamad, “Exact solutions to the combined KdV and mKdV equation”, Math. Meth. Appl. Sci., 15:2 (1992), 73–78 | DOI | MR
[25] D. Kaya, I. E. Inan, “A numerical application of the decomposition method for the combined KdV–mKdV equation”, Appl. Math. Comp., 168:2 (2005), 915–926 | DOI | MR
[26] E. V. Krishnan, Y.-Z. Peng, “Exact solutions to the combined KdV–mKdV equation by the extended mapping method”, Phys. Scr., 73:4 (2006), 405–409 | DOI | MR
[27] A. Bekir, “On traveling wave solutions to combined KdV–mKdV equation and modified Burgers–KdV equation”, Commun. Nonlinear Sci. Numer. Simul., 14:4 (2009), 1038–1042 | DOI | MR
[28] O. I. Bogoyavlenskii, “Oprokidyvayuschiesya solitony. III”, Izv. AN SSSR. Ser. matem., 54:1 (1990), 123–131 | DOI | MR | Zbl
[29] B. G. Konopelchenko, “Inverse spectral transform for the ($2+1$)-dimensional Gardner equation”, Inverse Problems, 7:5 (1991), 739–754 | DOI | MR
[30] X. Geng, C. Cao, “Decomposition of the ($2+1$)-dimensional Gardner equation and its quasi-periodic solutions”, Nonlinearity, 14:6 (2001), 1433–1452 | DOI | MR
[31] Y. Chen, Z. Yan, “New exact solutions of ($2+1$)-dimensional Gardner equation via the new sine-Gordon equation expansion method”, Chaos Solitons Fractals, 26:2 (2005), 399–406 | DOI | MR
[32] W.-P. Hu, Z.-C. Deng, Y.-Y. Qin, W.-R. Zhang, “Multi-symplectic method for the generalized ($2+1$)-dimensional KdV–mKdV equation”, Acta Mech. Sin., 28:3 (2012), 793–800 | DOI | MR
[33] Y. Liu, F. Duan, C. Hu, “Painlevé property and exact solutions to a ($2+1$) dimensional KdV–mKdV equation”, J. Appl. Math. Phys., 3:6 (2015), 697–706 | DOI
[34] T. Motsepa, C. M. Khalique, “On the conservation laws and solutions of a ($2+1$) dimensional KdV–mKdV equation of mathematical physics”, Open Phys., 16:1 (2018), 211–214 | DOI
[35] N. H. Ibragimov, “Optimal system of invariant solutions for the Burgers equation”, 2nd Conference on Non-linear Science and Complexity. MOGRAN-12: Symposium on Lie Group Analysis and Applications in Nonlinear Sciences. Session Tu-SA/1 (Porto, Portugal, 28–31 July, 2008)
[36] J. F. Ganghoffer, I. Mladenov (eds.), Similarity and Symmetry Methods. Applications in Elasticity and Mechanics of Materials (Varna, June 6–9, 2013), Lecture Notes in Applied and Computational Mechanics, 73, Springer, Cham, Switzerland, 2014 | MR
[37] Z. Zhao, B. Han, “Lie symmetry analysis, Bäcklund transformations, and exact solutions of a ($2+1$)-dimensional Boiti–Leon–Pempinelli system”, J. Math. Phys., 58:10 (2017), 101514, 15 pp. | DOI | MR
[38] Z. Zhao, B. Han, “Lie symmetry analysis of the Heisenberg equation”, Commun. Nonlinear Sci. Numer. Simul., 45 (2017), 220–234 | DOI | MR
[39] Z. Zhao, B. Han, “On symmetry analysis and conservation laws of the AKNS system”, Z. Naturforsch. A, 71:8 (2016), 741–750 | DOI
[40] H. Liu, Y. Geng, “Symmetry reductions and exact solutions to the systems of carbon nanotubes conveying fluid”, J. Differ. Equ., 254:5 (2013), 2289–2303 | DOI | MR
[41] H. Liu, B. Sang, X. Xin, X. Liu, “CK transformations, symmetries, exact solutions and conservation laws of the generalized variable-coefficient KdV types of equations”, J. Comput. Appl. Math., 345:1 (2019), 127–134 | DOI | MR
[42] X. Lü, W.-X. Ma, “Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation”, Nonlinear Dynam., 85:2 (2016), 1217–1222 | DOI | MR
[43] Y.-F. Hua, B.-L. Guo, W.-X. Ma, X. Lü, “Interaction behavior associated with a generalized ($2+1$)-dimensional Hirota bilinear equation for nonlinear waves”, Appl. Math. Model., 74 (2019), 184–198 | DOI | MR
[44] G.-Q. Xu, A.-M. Wazwaz, “Integrability aspects and localized wave solutions for a new ($4+1$)-dimensional Boiti–Leon–Manna–Pempinelli equation”, Nonlinear Dynam., 98:2 (2019), 1379–1390 | DOI
[45] W.-X. Ma, “Abundant lumps and their interaction solutions of ($3+1$)-dimensional linear PDEs”, J. Geom. Phys., 133 (2018), 10–16 | DOI | MR
[46] W.-X. Ma, Y. Zhou, “Lump solutions to nonlinear partial differential equations via Hirota bilinear forms”, J. Differ. Equ., 264:4 (2018), 2633–2659 | DOI | MR
[47] Z. Zhao, Y. Chen, B. Han, “Lump soliton, mixed lump stripe and periodic lump solutions of a ($2+1$)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation”, Modern Phys. Lett. B, 31:14 (2017), 1750157, 12 pp. | DOI | MR
[48] Z. Zhao, L. He, “Multiple lump solutions of the ($3+1$)-dimensional potential Yu–Toda–Sasa–Fukuyama equation”, Appl. Math. Lett., 95 (2019), 114–121 ; “$M$-lump and hybrid solutions of a generalized ($2+1$)-dimensional Hirota–Satsuma–Ito equation”, 111 (2021), 106612, 8 pp. ; “$M$-lump, high-order breather solutions and interaction dynamics of a generalized ($2+1$)-dimensional nonlinear wave equation”, Nonlinear Dynam., 100 (2020), 2753–2765 | DOI | MR | DOI | MR | DOI
[49] W.-X. Ma, “Lump solutions to the Kadomtsev–Petviashvili equation”, Phys. Lett. A, 379:36 (2015), 1975–1978 | DOI | MR