Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 139-148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By including spectral functions, we obtain nonlocal symmetries equivalent to Lie point symmetries of the corresponding extended systems for the Boussinesq equation, the modified generalized Vakhnenko equation, the Hirota–Satsuma equation, and the Sawada–Kotera equation. All considered equations have third-order Lax pairs, which allows studying their nonlocal symmetries in a unified way.
Keywords: nonlocal symmetry, modified generalized Vakhnenko equation, Hirota–Satsuma equation
Mots-clés : Boussinesq equation, Sawada–Kotera equation.
@article{TMF_2021_206_2_a0,
     author = {Xiazhi Hao},
     title = {Nonlocal symmetries of some nonlinear partial differential equations with third-order {Lax} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {139--148},
     year = {2021},
     volume = {206},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/}
}
TY  - JOUR
AU  - Xiazhi Hao
TI  - Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 139
EP  - 148
VL  - 206
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/
LA  - ru
ID  - TMF_2021_206_2_a0
ER  - 
%0 Journal Article
%A Xiazhi Hao
%T Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 139-148
%V 206
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/
%G ru
%F TMF_2021_206_2_a0
Xiazhi Hao. Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/

[1] A. M. Vinogradov, I. S. Krasilschik, “Odin metod vychisleniya vysshikh simmetrii nelineinykh evolyutsionnykh uravnenii i nelokalnye simmetrii”, Dokl. AN SSSR, 253:6 (1980), 1289–1293 | MR | Zbl

[2] I. S. Krasil'shchik, A. M. Vinogradov, “Nonlocal symmetries and the theory of coverings: An addendum to A. M. Vinogradov's ‘local symmetries and conservation laws’ ”, Acta Appl. Math., 2:1 (1984), 79–96 | DOI | MR

[3] I. S. Krasil'shchik, A. M. Vinogradov, “Nonlocal trends in the geometry of differential equations: Symmetries, conservation laws, and Bäcklund transformations”, Acta Appl. Math., 15:1–2 (1989), 161–209 | DOI | MR

[4] Y.-Q. Li, J.-C. Chen, Y. Chen, S.-Y. Lou, “Darboux transformations via Lie point symmetries: KdV equation”, Chin. Phys. Lett., 31:1 (2014), 010201, 5 pp. | DOI

[5] F. Galas, “New nonlocal symmetries with pseudopotentials”, J. Phys. A: Math. Gen., 25:15 (1992), L981–L986 | DOI | MR

[6] K. Kiso, “Pseudopotentials and symmetries of evolution equations”, Hokkaido Math. J., 18:1 (1989), 125–136 | DOI | MR

[7] I. Sh. Akhatov, R. K. Gazizov, N. Kh. Ibragimov, “Nelokalnye simmetrii. Evristicheskii podkhod”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Nov. dostizh., 34, 1989, 3–83 | DOI | MR | Zbl

[8] M. C. Nucci, “Pseudopotentials, Lax equations and Bäcklund transformations for nonlinear evolution equations”, J. Phys. A: Math. Gen., 21:1 (1988), 73–79 | DOI | MR

[9] S.-Y. Lou, X.-B. Hu, “Non-local symmetries via Darboux transformations”, J. Phys. A: Math. Gen., 30:5 (1997), L95–L100 | DOI | MR

[10] S. C. Anco, E. D. Avdonina, A. Gainetdinova, L. R. Galiakberova, N. H. Ibragimov, T. Wolf, “Symmetries and conservation laws of the generalized Krichever–Novikov equation”, J. Phys. A: Math. Theor., 49:10 (2016), 105201, 29 pp. | DOI | MR

[11] E. G. Reyes, “Nonlocal symmetries and the Kaup–Kupershmidt equation”, J. Math. Phys., 46:7 (2005), 073507, 19 pp. | DOI | MR

[12] R. Hernández-Heredero, E. G. Reyes, “Nonlocal symmetries and a Darboux transformation for the Camassa–Holm equation”, J. Phys. A: Math. Theor., 42:18 (2009), 182002, 9 pp. | DOI | MR

[13] R. Hernández Heredero, E. G. Reyes, “Nonlocal symmetries, compacton equations, and integrability”, Internat. J. Geom. Meth. Modern Phys., 10:9 (2013), 1350046, 24 pp. | DOI | MR

[14] S. B. Leble, N. V. Ustinov, “Third order spectral problems: reductions and Darboux transformations”, Inverse Problems, 10:3 (1994), 617–633 | DOI | MR

[15] A. S. Fokas, M. J. Ablowitz, “On the inverse scattering transform of multidimensional nonlinear equations related to first-order systems in the plane”, J. Math. Phys., 25:8 (1984), 2494–2505 | DOI | MR

[16] B. G. Konopelchenko, “The two-dimensional second-order differential spectral problem: compatibility conditions, general BTs and integrable equations”, Inverse Problems, 4:1 (1988), 151–163 | DOI | MR

[17] M. Leo, R. A. Leo, G. Soliani, P. Tempesta, “On the relation between Lie symmetries and prolongation structures of nonlinear field equations: Non-local symmetries”, Progr. Theor. Phys., 105:1 (2001), 77–97 | DOI | MR

[18] A.-M. Wazwaz, “Multiple-soliton solutions for the Boussinesq equation”, App. Math. Comput., 192:2 (2007), 479–486 | DOI | MR

[19] C. Gu, H. Hu, Z. Zhou, Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry, Mathematical Physics Studies, 26, Springer, Dordrecht, 2005 | MR

[20] X.-B. Hu, S.-Y. Lou, “Nonlocal symmetries of nonlinear integrable models”, Symmetry in Nonlinear Mathematical Physics (Kyiv, 12–18 July, 1999), Proceedings of Institute of Mathematics of NAS of Ukraine, 30, no. 1, Institute of Mathematics of NAS of Ukraine, Kyiv, 2000, 120–126 | MR

[21] S.-Y. Lou, “A note on the new similarity reductions of the Boussinesq equation”, Phys. Lett. A, 151:3–4 (1990), 133–135 | DOI | MR

[22] V. O. Vakhnenko, E. J. Parkes, “The calculation of multi-soliton solutions of the Vakh- nenko equation by the inverse scattering method”, Chaos Solitons Fractals, 13:9 (2002), 1819–1826 | DOI | MR

[23] Y. Wang, Y. Chen, “Integrability of the modified generalised Vakhnenko equation”, J. Math. Phys., 53:12 (2012), 123504, 20 pp. | DOI | MR

[24] V. O. Vakhnenko, E. J. Parkes, A. J. Morrison, “A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation”, Chaos Solitons Fractals, 17:4 (2003), 683–692 | DOI | MR

[25] P. G. Esteves, “Preobrazovaniya dvoistvennosti dlya spektralnoi zadachi v razmernosti $2+1$”, TMF, 159:3 (2009), 411–417 | DOI | DOI | MR | Zbl

[26] R. Hirota, J. Satsuma, “$N$-Soliton solutions of model equations for shallow water equation”, J. Phys. Soc. Japan, 40:2 (1976), 611-612 | DOI | MR

[27] P. A. Clarkson, E. L. Mansfield, “Symmetry reductions and exact solutions of shallow water wave equations”, Acta Appl. Math., 39:1–3 (1995), 245–276 | DOI | MR

[28] P. Deift, C. Tomei, E. Trubowitz, “Inverse scattering and the Boussinesq equation”, Commun. Pure Appl. Math., 35:5 (1982), 567–628 | DOI | MR