Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 139-148

Voir la notice de l'article provenant de la source Math-Net.Ru

By including spectral functions, we obtain nonlocal symmetries equivalent to Lie point symmetries of the corresponding extended systems for the Boussinesq equation, the modified generalized Vakhnenko equation, the Hirota–Satsuma equation, and the Sawada–Kotera equation. All considered equations have third-order Lax pairs, which allows studying their nonlocal symmetries in a unified way.
Keywords: nonlocal symmetry, Boussinesq equation, modified generalized Vakhnenko equation
Mots-clés : Hirota–Satsuma equation, Sawada–Kotera equation.
@article{TMF_2021_206_2_a0,
     author = {Xiazhi Hao},
     title = {Nonlocal symmetries of some nonlinear partial differential equations with third-order {Lax} pairs},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {206},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/}
}
TY  - JOUR
AU  - Xiazhi Hao
TI  - Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 139
EP  - 148
VL  - 206
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/
LA  - ru
ID  - TMF_2021_206_2_a0
ER  - 
%0 Journal Article
%A Xiazhi Hao
%T Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 139-148
%V 206
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/
%G ru
%F TMF_2021_206_2_a0
Xiazhi Hao. Nonlocal symmetries of some nonlinear partial differential equations with third-order Lax pairs. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 2, pp. 139-148. http://geodesic.mathdoc.fr/item/TMF_2021_206_2_a0/