Study of cylindrically symmetric solutions in an $f(R)$ gravity background
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 125-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We investigate static cylindrically symmetric solutions of the Weyl and Gödel space–times in the framework of modified $f(R)$ gravity. With this aim, we consider the modified higher-order theory of gravity based on nonconformal invariant gravitational waves. From the modified Einstein equations, we derive two exact solutions of the Weyl space–time and find one exact and one numerical solution of the Gödel space–time. In particular, we obtain a family of exact solutions with a constant scalar curvature $R$ depending on arbitrary constants for both space–times. It is interesting that the second solution for the Weyl metric has a nonconstant Ricci scalar. We find that the result obtained by solving the higher-order theory of gravity is similar to the result for the Einstein field equations with a cosmological constant. Moreover, we graphically study the role of the metric coefficients in both space–times.
Keywords: Hilbert Lagrangian, modified $f(R)$ gravity, vacuum solutions, Weyl
Mots-clés : Gödel.
@article{TMF_2021_206_1_a6,
     author = {M. A. Farooq and M. F. Shamir},
     title = {Study of cylindrically symmetric solutions in an~$f(R)$ gravity background},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {125--136},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a6/}
}
TY  - JOUR
AU  - M. A. Farooq
AU  - M. F. Shamir
TI  - Study of cylindrically symmetric solutions in an $f(R)$ gravity background
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 125
EP  - 136
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a6/
LA  - ru
ID  - TMF_2021_206_1_a6
ER  - 
%0 Journal Article
%A M. A. Farooq
%A M. F. Shamir
%T Study of cylindrically symmetric solutions in an $f(R)$ gravity background
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 125-136
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a6/
%G ru
%F TMF_2021_206_1_a6
M. A. Farooq; M. F. Shamir. Study of cylindrically symmetric solutions in an $f(R)$ gravity background. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 125-136. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a6/

[1] A. G. Riess, L.-G. Strolger, J. Tonry et al., “Type Ia supernova discoveries at $z>1$ from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution”, Astrophys. J., 607:2 (2004), 665–687 | DOI

[2] A. H. Buchdahl, “Non-linear Lagrangians and cosmological theory”, Mon. Not. R. Astron. Soc., 150:1 (1970), 1–8 | DOI

[3] S. Capozziello, V. F. Cardone, M. Francaviglia, “$f(R)$ theories of gravity in the Palatini approach matched with observations”, Gen. Rel. Gravit., 38:5 (2006), 711–734 | DOI | MR

[4] A. Azadi, D. Momeni, M. Nouri-Zonoz, “Cylinderical solutions in metric $f(R)$ gravity”, Phys. Lett. B, 670:3 (2008), 210–214 | DOI | MR

[5] S. Nojiri, S. D. Odintsov, “Unified cosmic history in modified gravity: from $F(R)$ theory to Lorentz non-invariant models”, Phys. Rep., 505:2–4 (2011), 59–144, arXiv: 1011.0544 | DOI | MR

[6] S. Nojiri, S. D. Odintsov, V. K. Oikonomou, “Modified gravity theories on a nutshell: inflation, bounce and late-time evolution”, Phys. Rep., 692 (2017), 1–104, arXiv: 1705.11098 | DOI | MR

[7] S. N. Pandey, A. M. Mishra, “Solution of an $f(R)$ theory of gravitation in cylindrical symmetric Godel space-time”, Proceedings of the World Congress on Engineering – 2016 (June 29 – July 1, 2016, London, UK), v. I, Lecture Notes in Engineering and Computer Science, 2223, eds. S. I. Ao, L. Gelman, D. WL Hukins, A. Hunter, A. M. Korsunsky, Newswood Limited, London\par, 2016, 84–87 http://www.iaeng.org/publication/WCE2016/WCE2016_pp84-87.pdf

[8] M. J. S. Houndjo, D. Momeni, R. Myrzakulov, “Cylindrical solutions in modified $f(T)$ gravity”, Internat. J. Modern Phys. D, 21:14 (2012), 1250093, 12 pp., arXiv: 1206.3938 | DOI | MR

[9] M. J. S. Houndjo, M. E. Rodrigues, D. Momeni, R. Myrzakulov, “Exploring cylindrical solutions in modified $f(G)$ gravity”, Canad. J. Phys., 92:12 (2014), 1528–1540, arXiv: 1301.4642 | DOI

[10] C. S. Trendafilova, S. A. Fulling, “Static solutions of Einstein's equations with cylindrical symmetry”, Eur. J. Phys., 32:6 (2011), 1663–1677 | DOI

[11] M. Sharif, A. Siddiqa, “Models of collapsing and expanding cylindrical source in $f(R,T)$ theory”, Adv. High Energy Phys., 2019 (2019), 8702795, 16 pp. | DOI

[12] D. Momeni, K. Myrzakulov, R. Myrzakulov, M. Raza, “Cylindrical solutions in mimetic gravity”, Eur. Phys. J. C, 76:6 (2016), 301, 8 pp. | DOI

[13] J. L. Said, J. Sultana, K. Z. Adami, “Exact static cylindrical black hole solution to conformal Weyl gravity”, Phys. Rev. D, 85:10 (2012), 104054, 8 pp., arXiv: 1201.0860 | DOI

[14] M. T. Rincon-Ramirez, L. Castañeda, Study of cylindrically symmetric solutions in metric $f(R)$ gravity with constant $R$, arXiv: 1305.1652

[15] I. Brito, J. Carot, F. C. Mena, E. G. L. R. Vaz, “Cylindrically symmetric static solutions of the Einstein field equations for elastic matter”, J. Math. Phys., 53:12 (2012), 122504, 16 pp., arXiv: 1403.5684 | DOI | MR

[16] M. F. Shamir, Z. Raza, “Cylindrically symmetric solutions in $f(R,T)$ gravity”, Astrophys. Space Sci., 356:1 (2015), 111–118 | DOI

[17] S. N. Pandey, “Higher-order theory of gravitation”, Internat. J. Theor. Phys., 27:6 (1988), 695–702 | DOI | MR

[18] N. Pandey, Gravitation, Phoenix, New Delhi, 1999

[19] L. Carlitz, “The inverse of the error function”, Pacific J. Math., 13:2 (1963), 459–470 | DOI | MR

[20] L. P. Grischuk, “Gravitatsionnye volny v kosmose i v laboratorii”, UFN, 121:10 (1977), 629–656 | DOI | DOI

[21] K. Gödel, “An example of a new type of cosmological solutions of Einstein's field equations of gravitation”, Rev. Modern Phys., 21:3 (1949), 447–450 | DOI | MR

[22] R. Gleiser, M. Gürses, A. Karasu, Ö. Sar{\i}oğlu, “Closed time like curves and geodesics of Gödel-type metrics”, Class. Quantum Grav., 23:7 (2006), 2653–2663, arXiv: gr-qc/0512037 | DOI | MR

[23] K. A. Bronnikov, “Static fluid cylinders and plane layers in general relativity”, J. Phys. A: Math. Gen., 12:2 (1979), 201–207 | DOI

[24] K. A. Bronnikov, G. N. Shikin, “Cylindrically symmetric solitons with nonlinear self-gravitating scalar fields”, Grav. Cosmol., 7:3 (2001), 231–240, arXiv: gr-qc/0101086v1 | MR

[25] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact Solutions of Einstein's Field Equations, Cambridge Monographs on Mathematical Physics, Cambridge Univ. Press, Cambridge, 2009 | DOI | MR | Zbl

[26] D. Dominici, Asymptotic analysis of the derivatives of the inverse error function, arXiv: math/0607230

[27] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979 | MR | MR | Zbl

[28] A. J. Accioly, G. E. A. Matsas, “Are there causal vacuum solutions with the symmetries of the Gödel universe in higher-derivative gravity?”, Phys. Rev. D, 38:4 (1988), 1083–1086 | DOI | MR

[29] G. Cognola, E. Elizalde, S. Nojiri, S. D. Odintsov, S. Zerbini, “One-loop $f(R)$ gravity in de Sitter universe”, JCAP, 02:2 (2005), 010, 27 pp., arXiv: hep-th/0501096 | DOI | MR