Extremality of the unique translation-invariant Gibbs measure for hard-core models on the Cayley tree of order $k=3$
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 112-124 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study fertile hard-core models with three states and an activity parameter $\lambda>0$ on the Cayley tree of order $k=3$. It is known that there are four types of such models. For two of them, we find the regions where the unique translation-invariant Gibbs measure is (not) extremal. For one of the considered models, we find the conditions under which the extremal measure is not unique.
Keywords: Cayley tree, hard-core model, fertile graph, Gibbs measure, translation-invariant measure, measure extremality.
Mots-clés : configuration
@article{TMF_2021_206_1_a5,
     author = {R. M. Khakimov and K. O. Umirzakova},
     title = {Extremality of the~unique translation-invariant {Gibbs} measure for hard-core models on {the~Cayley} tree of order $k=3$},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {112--124},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a5/}
}
TY  - JOUR
AU  - R. M. Khakimov
AU  - K. O. Umirzakova
TI  - Extremality of the unique translation-invariant Gibbs measure for hard-core models on the Cayley tree of order $k=3$
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 112
EP  - 124
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a5/
LA  - ru
ID  - TMF_2021_206_1_a5
ER  - 
%0 Journal Article
%A R. M. Khakimov
%A K. O. Umirzakova
%T Extremality of the unique translation-invariant Gibbs measure for hard-core models on the Cayley tree of order $k=3$
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 112-124
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a5/
%G ru
%F TMF_2021_206_1_a5
R. M. Khakimov; K. O. Umirzakova. Extremality of the unique translation-invariant Gibbs measure for hard-core models on the Cayley tree of order $k=3$. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 112-124. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a5/

[1] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | MR | Zbl

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 1974 | MR

[3] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[4] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR | Zbl

[5] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of all translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR

[6] A. E. Mazel, Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Statist. Phys., 64:1–2 (1991), 111–134 | DOI | MR

[7] G. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B., 77:2 (1999), 221–262 | DOI | MR

[8] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR

[9] J. B. Martin, U. A. Rozikov, Yu. M. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR

[10] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | DOI | MR | Zbl

[11] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh HC-modelei s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | DOI | MR

[12] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR

[13] S. Kissel, C. Külske, U. A. Rozikov, “Hard-core and soft-core Widom–Rowlinson models on Cayley trees”, J. Stat. Mech., 2019 (2019), 043204, 22 pp., arXiv: 1901.09258 | DOI

[14] R. M. Khakimov, K. O. Umirzakova, “Periodicheskie mery Gibbsa dlya NS-modelei s tremya sostoyaniyami v sluchae “zhezl””, arXiv: 2007.14611

[15] N. N. Ganikhodjaev, F. M. Mukhamedov, J. F. F. Mendes, “On the three state Potts model with competing interactions on the Bethe lattice”, J. Stat. Mech., 2006 (2006), P08012, 29 pp. | DOI

[16] F. Martinelli, A. Sinclair, D. Weitz, “Fast mixing for independent sets, coloring and other models on trees”, Random Structures Algoritms, 31:2 (2007), 134–172 | DOI | MR

[17] H. Kesten, B. P. Stigum, “Additional limit theorem for indecomposable multi-dimensional Galton–Watson processes”, Ann. Math. Statist., 37:6 (1966), 1463–1481 | DOI | MR

[18] C. Külske, U. A. Rozikov, “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures Algorithms, 50:4 (2017), 636–678 | DOI | MR

[19] C. Külske, U. A. Rozikov, “Extremality of translation-invariant phases for a three-state SOS-model on the binary tree”, J. Stat. Phys., 160:3 (2015), 659–680 | DOI | MR