Weak asymptotics of the wave function for an $N$-particle system and asymptotic filtration
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 79-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct asymptotic representations for large values of the hyperradius for the scattering wave function of an $N$-particles system regarded as a generalized function of angular coordinates. We express the coefficients of the asymptotic representations in terms of the $N$-particle scattering matrix. We discover the phenomenon of asymptotic filtration: only scattering processes in which all particles are free both before and after interaction contribute to the leading terms of such an asymptotic representation. We use the obtained representations to construct the correct asymptotic forms of the partial components of the $N$-particle wave function in the hyperspherical representation.
Keywords: $N$-particle scattering problem, weak asymptotics, hyperspherical representation, asymptotic filtration.
@article{TMF_2021_206_1_a3,
     author = {S. L. Yakovlev},
     title = {Weak asymptotics of the~wave function for an~$N$-particle system and asymptotic filtration},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {79--96},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/}
}
TY  - JOUR
AU  - S. L. Yakovlev
TI  - Weak asymptotics of the wave function for an $N$-particle system and asymptotic filtration
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 79
EP  - 96
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/
LA  - ru
ID  - TMF_2021_206_1_a3
ER  - 
%0 Journal Article
%A S. L. Yakovlev
%T Weak asymptotics of the wave function for an $N$-particle system and asymptotic filtration
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 79-96
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/
%G ru
%F TMF_2021_206_1_a3
S. L. Yakovlev. Weak asymptotics of the wave function for an $N$-particle system and asymptotic filtration. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 79-96. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/

[1] S. P. Merkurev, “Koordinatnaya asimptotika volnovoi funktsii dlya sistemy trekh chastits”, TMF, 8:2 (1971), 249–250 | DOI

[2] S. L. Yakovlev, “Ob asimptoticheskom povedenii volnovoi funktsii trekh chastits v kontinuume”, TMF, 186:1 (2016), 152–163 | DOI | DOI | MR

[3] S. L. Yakovlev, “Koordinatnaya asimptotika volnovoi funktsii dlya sistemy chetyrekh chastits, svobodnykh v nachalnom sostoyanii”, TMF, 82:2 (1990), 224–241 | DOI | MR

[4] S. P. Merkurev, L. D. Faddeev, Kvantovaya teoriya rasseyaniya dlya sistem neskolkikh chastits, Nauka, M., 1974 | DOI | MR | Zbl

[5] J. Nuttal, “Asymptotic form of the three-particle scattering wave function for free incident particles”, J. Math. Phys., 12:9 (1971), 1896–1899 | DOI

[6] R. G. Newton, “The asymptotic form of three-particle wavefunctions and the cross sections”, Ann. Phys., 74:2 (1972), 324–351 | DOI | MR

[7] S. P. Merkurev, S. L. Yakovlev, “Kvantovaya teoriya rasseyaniya dlya $N$ tel v konfiguratsionnom prostranstve”, TMF, 56:1 (1983), 60–73 | DOI | MR

[8] S. L. Yakovlev, “Kvantovaya problema $N$ tel: matrichnye struktury i uravneniya”, TMF, 181:1 (2014), 218–240 | DOI | DOI | MR

[9] L. D. Faddeev, Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. MIAN, 69, Izd-vo AN SSSR, M.-L., 1963 | MR | Zbl

[10] N. Ya. Vilenkin, Spetsialnye funktsii i teoriya predstavlenii grupp, Nauka, M., 1965

[11] R. I. Dzhibuti, N. B. Krupennikova, Metod gipersfericheskikh funktsii v kvantovoi mekhanike neskolkikh tel, Metsniereba, Tbilisi, 1984