Weak asymptotics of the~wave function for an~$N$-particle system and asymptotic filtration
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 79-96
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct asymptotic representations for large values of the hyperradius for the scattering wave function of an $N$-particles system regarded as a generalized function of angular coordinates. We express the coefficients of the asymptotic representations in terms of the $N$-particle scattering matrix. We discover the phenomenon of asymptotic filtration: only scattering processes in which all particles are free both before and after interaction contribute to the leading terms of such an asymptotic representation. We use the obtained representations to construct the correct asymptotic forms of the partial components of the $N$-particle wave function in the hyperspherical representation.
Keywords:
$N$-particle scattering problem, weak asymptotics, hyperspherical representation, asymptotic filtration.
@article{TMF_2021_206_1_a3,
author = {S. L. Yakovlev},
title = {Weak asymptotics of the~wave function for an~$N$-particle system and asymptotic filtration},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {79--96},
publisher = {mathdoc},
volume = {206},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/}
}
TY - JOUR AU - S. L. Yakovlev TI - Weak asymptotics of the~wave function for an~$N$-particle system and asymptotic filtration JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 79 EP - 96 VL - 206 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/ LA - ru ID - TMF_2021_206_1_a3 ER -
S. L. Yakovlev. Weak asymptotics of the~wave function for an~$N$-particle system and asymptotic filtration. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 79-96. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a3/