Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 47-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We systematically present an inverse scattering transform for a nonlocal reverse-space higher-order nonlinear Schrödinger equation with nonzero boundary conditions at infinity. We discuss two cases determined by two different values of the phase at infinity. In particular, for the direct problem, we study the analytic properties of the scattering data and the eigenfunctions and also find their symmetries. We study the inverse scattering problem obtained from the new nonlocal system using left and right Riemann–Hilbert problems with a suitable uniformization variable; we construct the time dependence of the scattering data. Finally, for these two phase values, we analyze the dynamics of solitons (solutions of the considered Schrödinger equation) in detail.
Keywords: nonlocal reverse-space higher-order nonlinear Schrödinger equation, inverse scattering transform, Riemann–Hilbert problem.
@article{TMF_2021_206_1_a2,
     author = {Xiu-Bin Wang and Bo Han},
     title = {Pure soliton solutions of the~nonlocal {Kundu{\textendash}nonlinear} {Schr\"odinger} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {47--78},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/}
}
TY  - JOUR
AU  - Xiu-Bin Wang
AU  - Bo Han
TI  - Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 47
EP  - 78
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/
LA  - ru
ID  - TMF_2021_206_1_a2
ER  - 
%0 Journal Article
%A Xiu-Bin Wang
%A Bo Han
%T Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 47-78
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/
%G ru
%F TMF_2021_206_1_a2
Xiu-Bin Wang; Bo Han. Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 47-78. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/

[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–deVries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI

[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR

[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR

[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl

[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl

[6] M. Wadati, “The modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI | MR

[7] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI | MR

[8] G. Zhang, Z. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Phys. D, 410 (2020), 132521, 22 pp. | DOI | MR

[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR

[10] M. J. Ablowitz, D. B. Yaacov, A. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI | MR

[11] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation”, Inverese Problems, 22:6 (2006), 2197–2208 | DOI | MR

[12] A. S. Fokas, M. J. Ablowitz, “The inverse scattering transform for the Benjamin–Ono equation pivot to multidimensional problems”, Stud. Appl. Math., 68:1 (1983), 1–10 | DOI | MR

[13] A. Constantin, R. I. Ivanov, J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23:10 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR

[14] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR

[15] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions”, J. Math. Phys., 55:10 (2014), 101505, 40 pp. | DOI | MR

[16] G. Biondini, D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR | Zbl

[17] G. Biondini, G. Kovačič, D. K. Kraus, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR | Zbl

[18] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR

[19] G. Biondini, D. K. Kraus, B. Prinari, “The three component focusing non-linear Schrödinger equation with nonzero boundary conditions”, Commun. Math. Phys., 348:2 (2016), 475–533, arXiv: 1511.02885 | DOI | MR | Zbl

[20] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR

[21] C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathscr{P\!T}$-symmetric quantum mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229, arXiv: quant-ph/9809072 | DOI | MR

[22] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to Hermiticity”, J. Phys. A: Math Gen., 36:25 (2003), 7081–7092, arXiv: quant-ph/0304080 | DOI | MR

[23] C. M. Bender, D. C. Brody, H. F. Jones, B. K. Meister, “Faster than Hermitian quantum mechanics”, Phys. Rev. Lett., 98:4 (2007), 040403, 4 pp., arXiv: quant-ph/0609032 | DOI | MR

[24] J. Yang, “Partially $\mathscr{P\!T}$ symmetric optical potentials with all-real spectra and soliton families in multidimensions”, Opt. Lett., 39:5 (2014), 1133–1136, arXiv: 1312.3660 | DOI

[25] A. Ruschhaupt, F. Delgado, J. Muga, “Physical realization of $\mathscr{P\!T}$-symmetric potential scattering in a planar slab waveguide”, J. Phys. A: Math. Gen., 38:9 (2005), L171–L176 | DOI | MR

[26] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani, “Theory of coupled optical $PT$-symmetric structures”, Opt. Lett., 32:17 (2007), 2632–2634 | DOI

[27] H. Cartarius, G. Wunner, “Model of a $\mathscr{P\!T}$-symmetric Bose–Einstein condensate in a $\delta$-function double-well potential”, Phys. Rev. A, 86:1 (2012), 013612, 5 pp., arXiv: 1203.1885 | DOI

[28] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, T. Kottos, “Experimental study of active $LRC$ circuits with $\mathscr{P\!T}$ symmetries”, Phys. Rev. A, 84:4 (2011), 040101, 5 pp. | DOI

[29] C. M. Bender, B. K. Berntson, D. Parker, E. Samuel, “Observation of $\mathscr{P\!T}$ phase transition in a simple mechanical system”, Amer. J. Phys., 81:3 (2013), 173–179, arXiv: 1206.4972 | DOI

[30] T. A. Gadzhimuradov, A. M. Agalarov, “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation”, Phys. Rev. A, 93:6 (2011), 062124, 6 pp. | DOI

[31] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR

[32] A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations”, SIGMA, 2 (2006), 078, 12 pp. | DOI | MR | Zbl

[33] C. Zhang, C. Li, J. He, “Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation”, Math. Methods Appl. Sci., 38:11 (2015), 2411–2425 | DOI | MR

[34] X.-B. Wang, B. Han, “The Kundu-nonlinear Schrödinger equation: breathers, rogue waves and their dynamics”, J. Phys. Soc. Japan, 89:1 (2020), 014001, 5 pp. | DOI

[35] X.-B. Wang, B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions”, J. Math. Anal. Appl., 487:1 (2020), 123968, 20 pp. | DOI | MR

[36] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3:2 (1987), 229–262 | DOI | MR

[37] D.-S. Wang, B. Guo, X. Wang, “Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions”, J. Differ. Equ., 266:9 (2019), 5209–5253 | DOI | MR

[38] X. Shi, J. Li, C. Wu, “Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation”, Chaos, 29:2 (2019), 023120, 12 pp. | DOI | MR

[39] M. J. Ablowitz, X. D. Luo, Z. H. Musslimani, “The inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp., arXiv: 1612.02726 | DOI | MR | Zbl

[40] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[41] M. D. Ablovits, Bao-Fen Fen, Syui-Dan Lo, Z. Musslimani, “Metod obratnoi zadachi rasseyaniya dlya nelokalnogo nelineinogo uravneniya Shredingera s obrascheniem prostranstva-vremeni”, TMF, 196:3 (2018), 343–372 | DOI | DOI

[42] M. J. Ablowitz, B.-F. Feng, X.-D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 141:3 (2018), 267–307 | DOI | MR

[43] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2016), 7–59, arXiv: 1610.02594 | DOI | MR

[44] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[45] W.-X. Ma, Y. Huang, F. Wang, “Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies”, Stud. Appl. Math., 145:3 (2020), 563–585 | DOI

[46] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR

[47] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR

[48] Tyan Shou-Fu, Chzhan Khun-Tsin, “Periodicheskie volnovye resheniya, vyrazhaemye cherez super-teta-funktsii Rimana, i ratsionalnye kharakteristiki dlya supersimmetrichnogo uravneniya KdF–Byurgersa”, TMF, 170:3 (2012), 350–380 | DOI | DOI | MR

[49] J. Yang, “Physically significant nonlocal nonlinear Schrödinger equations and its soliton solutions”, Phys. Rev. E, 98:4 (2018), 042202, 12 pp., arXiv: 1807.02185 | DOI | MR

[50] Chzhi-Tsyan Li, Shou-Fu Tyan, Vei-Tsi Pen, Tszin-Tsze Yan, “Metod obratnoi zadachi rasseyaniya i klassifikatsiya solitonnykh reshenii nelineinogo uravneniya Shredingera–Maksvella–Blokha vysshego poryadka”, TMF, 203:3 (2020), 323–341 | DOI | DOI

[51] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, Y. Fang, “Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations”, J. Geom. Phys., 146 (2019), 103508, 9 pp. | DOI | MR

[52] X.-B. Wang, S.-F. Tian, T.-T. Zhang, “Characteristics of the breather and rogue waves in a $(2+1)$-dimensional nonlinear Schrödinger equation”, Proc. Amer. Math. Soc., 146:8 (2018), 3353–3365 | DOI | MR

[53] X.-B. Wang, B. Han, “The pair-transition-coupled nonlinear Schrödinger equation: The Riemann–Hilbert problem and $N$-soliton solutions”, Eur. Phys. J. Plus, 134:2 (2019), 78, 6 pp. | DOI

[54] W.-X. Ma, “Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions”, Acta Math. Sci., 39:2 (2019), 509–523 | DOI | MR

[55] G. Zhang, Z. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions”, Phys. D, 402 (2020), 132170, 14 pp. | DOI | MR

[56] G. Zhang, Z. Yan, “Multi-rational and semi-rational solitons and interactions for the nonlocal coupled nonlinear Schrödinger equations”, Europhys. Lett., 118:6 (2017), 60004, 6 pp. | DOI