@article{TMF_2021_206_1_a2,
author = {Xiu-Bin Wang and Bo Han},
title = {Pure soliton solutions of the~nonlocal {Kundu{\textendash}nonlinear} {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {47--78},
year = {2021},
volume = {206},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/}
}
Xiu-Bin Wang; Bo Han. Pure soliton solutions of the nonlocal Kundu–nonlinear Schrödinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 47-78. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/
[1] C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, “Method for solving the Korteweg–deVries equation”, Phys. Rev. Lett., 19:19 (1967), 1095–1097 | DOI
[2] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 21:5 (1968), 467–490 | DOI | MR
[3] V. E. Zakharov, A. B. Shabat, “Tochnaya teoriya dvumernoi samofokusirovki i odnomernoi avtomodulyatsii voln v nelineinykh sredakh”, ZhETF, 61:1 (1971), 118–134 | MR
[4] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Nonlinear-evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127 | DOI | MR | Zbl
[5] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems”, Stud. Appl. Math., 53:4 (1974), 249–315 | DOI | MR | Zbl
[6] M. Wadati, “The modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 34:5 (1973), 1289–1296 | DOI | MR
[7] M. Wadati, K. Ohkuma, “Multiple-pole solutions of the modified Korteweg-de Vries equation”, J. Phys. Soc. Japan, 51:6 (1982), 2029–2035 | DOI | MR
[8] G. Zhang, Z. Yan, “Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions”, Phys. D, 410 (2020), 132521, 22 pp. | DOI | MR
[9] M. J. Ablowitz, D. J. Kaup, A. C. Newell, H. Segur, “Method for solving the sine-Gordon equation”, Phys. Rev. Lett., 30:25 (1973), 1262–1264 | DOI | MR
[10] M. J. Ablowitz, D. B. Yaacov, A. Fokas, “On the inverse scattering transform for the Kadomtsev–Petviashvili equation”, Stud. Appl. Math., 69:2 (1983), 135–143 | DOI | MR
[11] A. Constantin, V. S. Gerdjikov, R. I. Ivanov, “Inverse scattering transform for the Camassa–Holm equation”, Inverese Problems, 22:6 (2006), 2197–2208 | DOI | MR
[12] A. S. Fokas, M. J. Ablowitz, “The inverse scattering transform for the Benjamin–Ono equation pivot to multidimensional problems”, Stud. Appl. Math., 68:1 (1983), 1–10 | DOI | MR
[13] A. Constantin, R. I. Ivanov, J. Lenells, “Inverse scattering transform for the Degasperis–Procesi equation”, Nonlinearity, 23:10 (2010), 2559–2575, arXiv: 1205.4754 | DOI | MR
[14] G. Biondini, G. Kovačič, “Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 55:3 (2014), 031506, 22 pp. | DOI | MR
[15] F. Demontis, B. Prinari, C. van der Mee, F. Vitale, “The inverse scattering transform for the focusing nonlinear Schrödinger equation with asymmetric boundary conditions”, J. Math. Phys., 55:10 (2014), 101505, 40 pp. | DOI | MR
[16] G. Biondini, D. Kraus, “Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions”, SIAM J. Math. Anal., 47:1 (2015), 706–757 | DOI | MR | Zbl
[17] G. Biondini, G. Kovačič, D. K. Kraus, “The focusing Manakov system with nonzero boundary conditions”, Nonlinearity, 28:9 (2015), 3101–3151 | DOI | MR | Zbl
[18] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR
[19] G. Biondini, D. K. Kraus, B. Prinari, “The three component focusing non-linear Schrödinger equation with nonzero boundary conditions”, Commun. Math. Phys., 348:2 (2016), 475–533, arXiv: 1511.02885 | DOI | MR | Zbl
[20] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR
[21] C. M. Bender, S. Boettcher, P. N. Meisinger, “$\mathscr{P\!T}$-symmetric quantum mechanics”, J. Math. Phys., 40:5 (1999), 2201–2229, arXiv: quant-ph/9809072 | DOI | MR
[22] A. Mostafazadeh, “Exact $PT$-symmetry is equivalent to Hermiticity”, J. Phys. A: Math Gen., 36:25 (2003), 7081–7092, arXiv: quant-ph/0304080 | DOI | MR
[23] C. M. Bender, D. C. Brody, H. F. Jones, B. K. Meister, “Faster than Hermitian quantum mechanics”, Phys. Rev. Lett., 98:4 (2007), 040403, 4 pp., arXiv: quant-ph/0609032 | DOI | MR
[24] J. Yang, “Partially $\mathscr{P\!T}$ symmetric optical potentials with all-real spectra and soliton families in multidimensions”, Opt. Lett., 39:5 (2014), 1133–1136, arXiv: 1312.3660 | DOI
[25] A. Ruschhaupt, F. Delgado, J. Muga, “Physical realization of $\mathscr{P\!T}$-symmetric potential scattering in a planar slab waveguide”, J. Phys. A: Math. Gen., 38:9 (2005), L171–L176 | DOI | MR
[26] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, Z. H. Musslimani, “Theory of coupled optical $PT$-symmetric structures”, Opt. Lett., 32:17 (2007), 2632–2634 | DOI
[27] H. Cartarius, G. Wunner, “Model of a $\mathscr{P\!T}$-symmetric Bose–Einstein condensate in a $\delta$-function double-well potential”, Phys. Rev. A, 86:1 (2012), 013612, 5 pp., arXiv: 1203.1885 | DOI
[28] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, T. Kottos, “Experimental study of active $LRC$ circuits with $\mathscr{P\!T}$ symmetries”, Phys. Rev. A, 84:4 (2011), 040101, 5 pp. | DOI
[29] C. M. Bender, B. K. Berntson, D. Parker, E. Samuel, “Observation of $\mathscr{P\!T}$ phase transition in a simple mechanical system”, Amer. J. Phys., 81:3 (2013), 173–179, arXiv: 1206.4972 | DOI
[30] T. A. Gadzhimuradov, A. M. Agalarov, “Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrödinger equation”, Phys. Rev. A, 93:6 (2011), 062124, 6 pp. | DOI
[31] A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR
[32] A. Kundu, “Integrable hierarchy of higher nonlinear Schrödinger type equations”, SIGMA, 2 (2006), 078, 12 pp. | DOI | MR | Zbl
[33] C. Zhang, C. Li, J. He, “Darboux transformation and rogue waves of the Kundu-nonlinear Schrödinger equation”, Math. Methods Appl. Sci., 38:11 (2015), 2411–2425 | DOI | MR
[34] X.-B. Wang, B. Han, “The Kundu-nonlinear Schrödinger equation: breathers, rogue waves and their dynamics”, J. Phys. Soc. Japan, 89:1 (2020), 014001, 5 pp. | DOI
[35] X.-B. Wang, B. Han, “Inverse scattering transform of an extended nonlinear Schrödinger equation with nonzero boundary conditions and its multisoliton solutions”, J. Math. Anal. Appl., 487:1 (2020), 123968, 20 pp. | DOI | MR
[36] F. Calogero, W. Eckhaus, “Nonlinear evolution equations, rescalings, model PDEs and their integrability. I”, Inverse Problems, 3:2 (1987), 229–262 | DOI | MR
[37] D.-S. Wang, B. Guo, X. Wang, “Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions”, J. Differ. Equ., 266:9 (2019), 5209–5253 | DOI | MR
[38] X. Shi, J. Li, C. Wu, “Dynamics of soliton solutions of the nonlocal Kundu-nonlinear Schrödinger equation”, Chaos, 29:2 (2019), 023120, 12 pp. | DOI | MR
[39] M. J. Ablowitz, X. D. Luo, Z. H. Musslimani, “The inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp., arXiv: 1612.02726 | DOI | MR | Zbl
[40] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR
[41] M. D. Ablovits, Bao-Fen Fen, Syui-Dan Lo, Z. Musslimani, “Metod obratnoi zadachi rasseyaniya dlya nelokalnogo nelineinogo uravneniya Shredingera s obrascheniem prostranstva-vremeni”, TMF, 196:3 (2018), 343–372 | DOI | DOI
[42] M. J. Ablowitz, B.-F. Feng, X.-D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 141:3 (2018), 267–307 | DOI | MR
[43] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear equations”, Stud. Appl. Math., 139:1 (2016), 7–59, arXiv: 1610.02594 | DOI | MR
[44] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI
[45] W.-X. Ma, Y. Huang, F. Wang, “Inverse scattering transforms and soliton solutions of nonlocal reverse-space nonlinear Schrödinger hierarchies”, Stud. Appl. Math., 145:3 (2020), 563–585 | DOI
[46] W.-X. Ma, “Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations”, Proc. Amer. Math. Soc., 149:1 (2021), 251–263 | DOI | MR
[47] J. Yang, “General $N$-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations”, Phys. Lett. A, 383:4 (2019), 328–337 | DOI | MR
[48] Tyan Shou-Fu, Chzhan Khun-Tsin, “Periodicheskie volnovye resheniya, vyrazhaemye cherez super-teta-funktsii Rimana, i ratsionalnye kharakteristiki dlya supersimmetrichnogo uravneniya KdF–Byurgersa”, TMF, 170:3 (2012), 350–380 | DOI | DOI | MR
[49] J. Yang, “Physically significant nonlocal nonlinear Schrödinger equations and its soliton solutions”, Phys. Rev. E, 98:4 (2018), 042202, 12 pp., arXiv: 1807.02185 | DOI | MR
[50] Chzhi-Tsyan Li, Shou-Fu Tyan, Vei-Tsi Pen, Tszin-Tsze Yan, “Metod obratnoi zadachi rasseyaniya i klassifikatsiya solitonnykh reshenii nelineinogo uravneniya Shredingera–Maksvella–Blokha vysshego poryadka”, TMF, 203:3 (2020), 323–341 | DOI | DOI
[51] W.-Q. Peng, S.-F. Tian, X.-B. Wang, T.-T. Zhang, Y. Fang, “Riemann–Hilbert method and multi-soliton solutions for three-component coupled nonlinear Schrödinger equations”, J. Geom. Phys., 146 (2019), 103508, 9 pp. | DOI | MR
[52] X.-B. Wang, S.-F. Tian, T.-T. Zhang, “Characteristics of the breather and rogue waves in a $(2+1)$-dimensional nonlinear Schrödinger equation”, Proc. Amer. Math. Soc., 146:8 (2018), 3353–3365 | DOI | MR
[53] X.-B. Wang, B. Han, “The pair-transition-coupled nonlinear Schrödinger equation: The Riemann–Hilbert problem and $N$-soliton solutions”, Eur. Phys. J. Plus, 134:2 (2019), 78, 6 pp. | DOI
[54] W.-X. Ma, “Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions”, Acta Math. Sci., 39:2 (2019), 509–523 | DOI | MR
[55] G. Zhang, Z. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions”, Phys. D, 402 (2020), 132170, 14 pp. | DOI | MR
[56] G. Zhang, Z. Yan, “Multi-rational and semi-rational solitons and interactions for the nonlocal coupled nonlinear Schrödinger equations”, Europhys. Lett., 118:6 (2017), 60004, 6 pp. | DOI