Pure soliton solutions of the~nonlocal Kundu--nonlinear Schr\"odinger equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 47-78
Voir la notice de l'article provenant de la source Math-Net.Ru
We systematically present an inverse scattering transform for a nonlocal reverse-space higher-order nonlinear Schrödinger equation with nonzero boundary conditions at infinity. We discuss two cases determined by two different values of the phase at infinity. In particular, for the direct problem, we study the analytic properties of the scattering data and the eigenfunctions and also find their symmetries. We study the inverse scattering problem obtained from the new nonlocal system using left and right Riemann–Hilbert problems with a suitable uniformization variable; we construct the time dependence of the scattering data. Finally, for these two phase values, we analyze the dynamics of solitons (solutions of the considered Schrödinger equation) in detail.
Keywords:
nonlocal reverse-space higher-order nonlinear Schrödinger equation,
inverse scattering transform, Riemann–Hilbert problem.
@article{TMF_2021_206_1_a2,
author = {Xiu-Bin Wang and Bo Han},
title = {Pure soliton solutions of the~nonlocal {Kundu--nonlinear} {Schr\"odinger} equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {47--78},
publisher = {mathdoc},
volume = {206},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/}
}
TY - JOUR AU - Xiu-Bin Wang AU - Bo Han TI - Pure soliton solutions of the~nonlocal Kundu--nonlinear Schr\"odinger equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2021 SP - 47 EP - 78 VL - 206 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/ LA - ru ID - TMF_2021_206_1_a2 ER -
Xiu-Bin Wang; Bo Han. Pure soliton solutions of the~nonlocal Kundu--nonlinear Schr\"odinger equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 47-78. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a2/