Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 23-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the class of $\mathfrak o_{2n+1}$-invariant quantum integrable models in the framework of the algebraic Bethe ansatz and propose a construction of the $\mathfrak o_{2n+1}$-invariant Bethe vector in terms of the Drinfeld currents for the Yangian double $\mathcal DY(\mathfrak o_{2n+1})$. We calculate the action of the monodromy matrix elements on the off-shell Bethe vectors for these models and obtain recurrence relations for these vectors. The action formulas can be used to investigate scalar products of Bethe vectors in $\mathfrak o_{2n+1}$-invariant models.
Keywords: algebraic Bethe ansatz, Yangian double of simple Lie algebra, Bethe vector.
@article{TMF_2021_206_1_a1,
     author = {A. N. Liashyk and S. Z. Pakuliak},
     title = {Algebraic {Bethe} ansatz for $\mathfrak o_{2n+1}$-invariant integrable},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {23--46},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/}
}
TY  - JOUR
AU  - A. N. Liashyk
AU  - S. Z. Pakuliak
TI  - Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 23
EP  - 46
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/
LA  - ru
ID  - TMF_2021_206_1_a1
ER  - 
%0 Journal Article
%A A. N. Liashyk
%A S. Z. Pakuliak
%T Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 23-46
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/
%G ru
%F TMF_2021_206_1_a1
A. N. Liashyk; S. Z. Pakuliak. Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 23-46. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/

[1] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR

[2] N. Yu. Reshetikhin, “Integriruemye modeli kvantovykh odnomernykh magnetikov s $O(n)$- i $Sp(2k)$-simmetriei”, TMF, 63:3 (1985), 347–366 | DOI | MR

[3] N. Yu. Reshetikhin, “Algebraicheskii anzats Bete dlya $SO(N)$-invariantnykh transfer-\allowbreakmatrits”, Zap. nauchn. sem. LOMI, 169 (1988), 122–140 | DOI | MR | Zbl | Zbl

[4] M. J. Martins, P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models”, Nucl. Phys. B, 500:1–3 (1997), 579–620, arXiv: hep-th/9703023 | DOI | MR

[5] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | Zbl

[6] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl

[7] J. Ding, I. Frenkel, “Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$”, Commun. Math. Phys., 156:2 (1993), 277–300 | DOI | MR

[8] N. Jing, F. Yang, M. Liu, “Yangian doubles of classical types and their vertex representations”, J. Math. Phys., 61:5 (2020), 051704, 39 pp., arXiv: 1810.06484 | DOI | MR

[9] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Commun. Math. Phys., 361:3 (2018), 827–872, arXiv: 1705.08155 | DOI | MR

[10] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$”, J. Math. Phys., 61:3 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR

[11] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp., arXiv: 1911.03496 | DOI | MR

[12] S. Khoroshkin, S. Pakuliak, “A computation of an universal weight function or the quantum affine algebra $U_q(\mathfrak{gl}(N))$”, J. Math. Kyoto Univ., 48:2 (2008), 277–321, arXiv: 0711.2819 | DOI | MR

[13] S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}(N)$”, J. Phys. A, 47:10 (2014), 105202, 16 pp., arXiv: 1310.3253 | DOI | MR

[14] A. A. Gutsalyuk, A. N. Lyashik, S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, “Tokovoe predstavlenie dlya dublya super-yangiana $DY(\mathfrak{gl}(m|n))$ i vektory Bete”, UMN, 72:1(433) (2017), 37–106, arXiv: 1611.09620 | DOI | DOI | MR

[15] B. Enriquez, S. Khoroshkin, S. Pakuliak, “Weight functions and Drinfeld currents”, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR

[16] A. Liashyk, S. Z. Pakuliak, Gauss coordinates vs currents for the Yangian doubles of the classical types, arXiv: 2006.01579

[17] D. Karakhanyanan, R. Kirschner, “Spinorial $R$ operator and Algebraic Bethe Ansatz”, Nucl. Phys. B, 951 (2020), 114905, 24 pp., arXiv: 1911.08385 | DOI | MR

[18] A. Gerrard, V. Regelskis, “Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains”, Nucl. Phys. B, 952 (2020), 114909, 67 pp., arXiv: 1909.12123 | DOI | MR

[19] A. Gerrard, V. Regelskis, “Nested algebraic Bethe ansatz for deformed orthogonal and symplectic spin chains”, Nucl. Phys. B, 956 (2020), 115021, 30 pp., arXiv: 1912.11497 | DOI | MR

[20] A. N. Lyashik, S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, “Vektory Bete v ortogonalnykh integriruemykh modelyakh”, TMF, 201:2 (2019), 153–174, arXiv: 1906.03202 | DOI | DOI | MR

[21] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors, arXiv: 2005.09249

[22] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311, arXiv: 1704.08173 | DOI

[23] A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors”, J. Stat. Mech., 2019:4 (2019), 044001 | DOI

[24] S. Belliard, S. Z. Pakuliak, E. Ragoucy, “Universal Bethe ansatz and scalar products of Bethe vectors”, SIGMA, 6 (2010), 094, 22 pp., arXiv: 1012.1455 | DOI | MR