@article{TMF_2021_206_1_a1,
author = {A. N. Liashyk and S. Z. Pakuliak},
title = {Algebraic {Bethe} ansatz for $\mathfrak o_{2n+1}$-invariant integrable},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {23--46},
year = {2021},
volume = {206},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/}
}
A. N. Liashyk; S. Z. Pakuliak. Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 23-46. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a1/
[1] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Ann. Phys., 120:2 (1979), 253–291 | DOI | MR
[2] N. Yu. Reshetikhin, “Integriruemye modeli kvantovykh odnomernykh magnetikov s $O(n)$- i $Sp(2k)$-simmetriei”, TMF, 63:3 (1985), 347–366 | DOI | MR
[3] N. Yu. Reshetikhin, “Algebraicheskii anzats Bete dlya $SO(N)$-invariantnykh transfer-\allowbreakmatrits”, Zap. nauchn. sem. LOMI, 169 (1988), 122–140 | DOI | MR | Zbl | Zbl
[4] M. J. Martins, P. B. Ramos, “The algebraic Bethe ansatz for rational braid-monoid lattice models”, Nucl. Phys. B, 500:1–3 (1997), 579–620, arXiv: hep-th/9703023 | DOI | MR
[5] V. G. Drinfeld, “Kvantovye gruppy”, Zap. nauchn. sem. LOMI, 155 (1986), 18–49 | DOI | Zbl
[6] V. G. Drinfeld, “Novaya realizatsiya yangianov i kvantovannykh affinnykh algebr”, Dokl. AN SSSR, 296:1 (1987), 13–17 | MR | Zbl
[7] J. Ding, I. Frenkel, “Isomorphism of two realizations of quantum affine algebra $U_q(\mathfrak{gl}(n))$”, Commun. Math. Phys., 156:2 (1993), 277–300 | DOI | MR
[8] N. Jing, F. Yang, M. Liu, “Yangian doubles of classical types and their vertex representations”, J. Math. Phys., 61:5 (2020), 051704, 39 pp., arXiv: 1810.06484 | DOI | MR
[9] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of Yangian in types $B$, $C$ and $D$”, Commun. Math. Phys., 361:3 (2018), 827–872, arXiv: 1705.08155 | DOI | MR
[10] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: type $C$”, J. Math. Phys., 61:3 (2020), 031701, 41 pp., arXiv: 1903.00204 | DOI | MR
[11] N. Jing, M. Liu, A. Molev, “Isomorphism between the $R$-matrix and Drinfeld presentations of quantum affine algebra: types $B$ and $D$”, SIGMA, 16 (2020), 043, 49 pp., arXiv: 1911.03496 | DOI | MR
[12] S. Khoroshkin, S. Pakuliak, “A computation of an universal weight function or the quantum affine algebra $U_q(\mathfrak{gl}(N))$”, J. Math. Kyoto Univ., 48:2 (2008), 277–321, arXiv: 0711.2819 | DOI | MR
[13] S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}(N)$”, J. Phys. A, 47:10 (2014), 105202, 16 pp., arXiv: 1310.3253 | DOI | MR
[14] A. A. Gutsalyuk, A. N. Lyashik, S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, “Tokovoe predstavlenie dlya dublya super-yangiana $DY(\mathfrak{gl}(m|n))$ i vektory Bete”, UMN, 72:1(433) (2017), 37–106, arXiv: 1611.09620 | DOI | DOI | MR
[15] B. Enriquez, S. Khoroshkin, S. Pakuliak, “Weight functions and Drinfeld currents”, Commun. Math. Phys., 276:3 (2007), 691–725 | DOI | MR
[16] A. Liashyk, S. Z. Pakuliak, Gauss coordinates vs currents for the Yangian doubles of the classical types, arXiv: 2006.01579
[17] D. Karakhanyanan, R. Kirschner, “Spinorial $R$ operator and Algebraic Bethe Ansatz”, Nucl. Phys. B, 951 (2020), 114905, 24 pp., arXiv: 1911.08385 | DOI | MR
[18] A. Gerrard, V. Regelskis, “Nested algebraic Bethe ansatz for orthogonal and symplectic open spin chains”, Nucl. Phys. B, 952 (2020), 114909, 67 pp., arXiv: 1909.12123 | DOI | MR
[19] A. Gerrard, V. Regelskis, “Nested algebraic Bethe ansatz for deformed orthogonal and symplectic spin chains”, Nucl. Phys. B, 956 (2020), 115021, 30 pp., arXiv: 1912.11497 | DOI | MR
[20] A. N. Lyashik, S. Z. Pakulyak, E. Ragusi, N. A. Slavnov, “Vektory Bete v ortogonalnykh integriruemykh modelyakh”, TMF, 201:2 (2019), 153–174, arXiv: 1906.03202 | DOI | DOI | MR
[21] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors, arXiv: 2005.09249
[22] A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nucl. Phys. B, 923 (2017), 277–311, arXiv: 1704.08173 | DOI
[23] A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of $\mathfrak{gl}(N)$-invariant Bethe vectors”, J. Stat. Mech., 2019:4 (2019), 044001 | DOI
[24] S. Belliard, S. Z. Pakuliak, E. Ragoucy, “Universal Bethe ansatz and scalar products of Bethe vectors”, SIGMA, 6 (2010), 094, 22 pp., arXiv: 1012.1455 | DOI | MR