Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization
Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 3-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Using the split Casimir operator, we find explicit formulas for the projectors onto invariant subspaces of the $\operatorname{ad}^{\otimes2}$ representation of the algebras $so(N)$ and $sp(2r)$. We also consider these projectors from the standpoint of the universal description of complex simple Lie algebras using the Vogel parameterization.
Keywords: invariant subspace, projector, simple Lie algebra, split Casimir operator, Vogel parameter.
@article{TMF_2021_206_1_a0,
     author = {A. P. Isaev and A. A. Provorov},
     title = {Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of {Lie} algebras $so(N)$ and $sp(2r)$ and {Vogel} parameterization},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--22},
     year = {2021},
     volume = {206},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a0/}
}
TY  - JOUR
AU  - A. P. Isaev
AU  - A. A. Provorov
TI  - Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2021
SP  - 3
EP  - 22
VL  - 206
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a0/
LA  - ru
ID  - TMF_2021_206_1_a0
ER  - 
%0 Journal Article
%A A. P. Isaev
%A A. A. Provorov
%T Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2021
%P 3-22
%V 206
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a0/
%G ru
%F TMF_2021_206_1_a0
A. P. Isaev; A. A. Provorov. Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization. Teoretičeskaâ i matematičeskaâ fizika, Tome 206 (2021) no. 1, pp. 3-22. http://geodesic.mathdoc.fr/item/TMF_2021_206_1_a0/

[1] J. B. McGuire, “Study of exactly soluble one-dimensional $N$-body problems”, J. Math. Phys., 5:5 (1964), 622–636 | DOI | MR

[2] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19:23 (1967), 1312–1315 | DOI | MR

[3] R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982 | MR

[4] A. B. Zamolodchikov, Al. B. Zamolodchikov, “Factorized $S$-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Ann. Phys. (N. Y.), 120:2 (1979), 253–291 | DOI | MR

[5] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40:2 (1979), 194–220 | DOI | MR

[6] V. G. Drinfeld, “Quantum groups”, Proceedings of the International Congress of Mathematicians (Berkeley, California, USA, August 3–11, 1986), v. 1, ed. A. M. Gleason, AMS, Providence, RI, 1986, 798–820 | MR

[7] M. Jimbo, “A $q$-analogue of $U(\mathfrak{gl}(N+1))$, Hecke algebra and the Yang–Baxter equation”, Lett. Math. Phys., 11:3 (1986), 247–252 ; “Introduction to the Yang–Baxter equation”, Internat. J. Modern Phys. A, 4:15 (1989), 3759–3777 | DOI | MR | DOI | MR

[8] V. Pasquier, H. Saleur, “Common structures between finite systems and conformal field theories through quantum groups”, Nucl. Phys. B, 330:2–3 (1990), 523–556 | DOI | MR

[9] M. Karowski, A. Zapletal, “Quantum-group-invariant integrable $n$-state vertex models with periodic boundary conditions”, Nucl. Phys. B, 419:3 (1994), 567–588, arXiv: hep-th/9312008 | DOI | MR

[10] P. P. Kulish, Quantum groups and quantum algebras as symmetries of dynamical systems, Preprint YITP/K-959, Yukawa Institute for Theoretical Physics, Kyoto, 1991

[11] N. Yu. Reshetikhin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovanie grupp Li i algebr Li”, Algebra i analiz, 1:1 (1989), 178–206 | MR | Zbl

[12] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge Univ. Press, Cambridge, 1994 | MR

[13] A. P. Isaev, Quantum groups and Yang–Baxter equations, MPI 2004-132, MPI, Bonn, 2004 http://webdoc.sub.gwdg.de/ebook/serien/e/mpi_mathematik/2004/132.pdf

[14] P. Vogel, The universal Lie algebra, Preprint, Université Paris VII, UFR de mathématiques, Paris, 1999

[15] P. Deligne, “La série exceptionnelle des groupes de Lie”, C. R. Acad. Sci. Paris Sér. I Math., 322:4 (1996), 321–326 | MR

[16] J. M. Landsberg, L. Manivel, “A universal dimension formula for complex simple Lie algebras”, Adv. Math., 201:2 (2006), 379–407 | DOI | MR

[17] R. L. Mkrtchyan, A. N. Sergeev, A. P. Veselov, “Casimir eigenvalues for universal Lie algebra”, J. Math. Phys., 53:10 (2012), 102106, 7 pp. | DOI | MR

[18] J. M. Landsberg, L. Manivel, “Triality, exceptional Lie algebras and Deligne dimension formulas”, Adv. Math., 171:1 (2002), 59–85 | DOI | MR

[19] A. Mironov, R. Mkrtchyan, A. Morozov, “On universal knot polynomials”, JHEP, 02 (2016), 78, 34 pp. | MR

[20] A. P. Isaev, V. A. Rubakov, Teoriya grupp i simmetrii. Konechnye gruppy. Gruppy i algebry Li, Izd-vo KRASAND, M., 2018

[21] R. Feger, Th. W. Kephart, “LieART – A Mathematica application for Lie algebras and representation theory”, Comput. Phys. Commun., 92 (2015), 166–195, arXiv: 1206.6379 | DOI | MR

[22] N. Yamatsu, Finite-dimensional Lie algebras and their representations for unified model building, arXiv: 1511.08771

[23] P. Cvitanović, Group Theory: Birdtracks, Lie's, and Exceptional Groups, Princeton Univ. Press, Oxford, 2008